
Bug Fixes, Improvements, ... and Privacy Leaks
A Longitudinal Study of PII Leaks Across Android App Versions

Jingjing Ren∗, Martina Lindorfer†, Daniel J. Dubois∗,
Ashwin Rao‡, David Choffnes∗ and Narseo Vallina-Rodriguez§

∗Northeastern University †UC Santa Barbara ‡University of Helsinki §IMDEA Networks Institute and ICSI
∗{renjj, d.dubois, choffnes}@ccs.neu.edu †martina@iseclab.org ‡ashwin.rao@cs.helsinki.fi §narseo.vallina@imdea.org

Abstract—Is mobile privacy getting better or worse over time?
In this paper, we address this question by studying privacy leaks
from historical and current versions of 512 popular Android
apps, covering 7,665 app releases over 8 years of app version
history. Through automated and scripted interaction with apps
and analysis of the network traffic they generate on real mobile
devices, we identify how privacy changes over time for individual
apps and in aggregate. We find several trends that include
increased collection of personally identifiable information (PII)
across app versions, slow adoption of HTTPS to secure the
information sent to other parties, and a large number of third
parties being able to link user activity and locations across apps.
Interestingly, while privacy is getting worse in aggregate, we
find that the privacy risk of individual apps varies greatly over
time, and a substantial fraction of apps see little change or
even improvement in privacy. Given these trends, we propose
metrics for quantifying privacy risk and for providing this risk
assessment proactively to help users balance the risks and benefits
of installing new versions of apps.

I. INTRODUCTION

As mobile devices and apps become increasingly present
in our everyday lives, the potential for accessing and sharing
personal information has grown. The corresponding privacy risks
from using these apps have received significant attention, not
only from users who are at risk [55], but also from regulators
who enforce laws that protect them [26].

A key problem with the above trend is that once personal
information is shared with another party, it can potentially
be linked to that individual forever. Thus, monitoring privacy
implications of mobile apps should not focus just on a snapshot of
their behavior, but also on how their behavior evolved over time.
In fact, because apps are regularly updated with new versions
(as frequently as once a month on average [12], [19]) that fix
bugs, improve performance, add features, and even change what
is shared with other parties, it is essential to study app behavior
across versions.

In this paper, we are the first to conduct a comprehensive,
longitudinal study of the privacy implications of using multiple
versions of popular mobile apps across each app’s lifetime. We
focus specifically on Android apps1 and identify when personally

1The only platform where we can access historical versions of apps.

identifiable information (PII) appears in Internet traffic while
using them. Through hybrid automated and scripted interactions
with 512 apps (across 7,665 distinct versions), we compile
a dataset that informs what information is exposed over the
Internet (identifiers, locations, passwords, etc.), how it is exposed
(encrypted or plaintext), and to whom that information is exposed
(first or third party). We analyze this dataset to understand
how privacy has changed over time (for individual apps and
in aggregate across popular apps), why these trends occur, and
what their implications are.

Our work substantially extends existing mobile privacy
research [23], [43], [49], [50] by focusing on multiple versions
of apps instead of individual versions. Moreover, most existing
longitudinal studies infer privacy risks by using static analysis
to monitor library usage and permission requests [12], [15], [53],
[54]. In contrast, we detect actual PII transmitted in network
traffic to other parties while an app is used.

Gathering a longitudinal view of the privacy implications of
using apps over time poses the following challenges:

• Monitoring app behavior across versions for a large number
of apps requires a methodology that scales accordingly.
Manually logging into apps and interacting with them can
comprehensively trigger privacy leaks, but this is infeasible
at scale. Instead, we use a semi-automated approach that
incorporates random interactions [33] and manually generated
scripts for logging into apps.

• We need a way to identify the privacy risks for each app. To
this end, we analyze network traffic2 generated by the mobile
device running the app, using both simple text matching
on known identifiers and machine-learning inference [50] to
extract identifiers not known in advance.

• We need a systematic, configurable, and meaningful way
to compare the privacy guarantees of the apps (and their
versions). To this end, we identify several metrics that provide
insight into privacy trends and implications.

Using the above approach, our study is the first to reveal the
privacy implications of popular apps across multiple versions:

On average, privacy has worsened over time. We analyze privacy
risks along multiple attributes (what PII is leaked, to how many
destinations, and whether it is encrypted) independently and in
combination. We find that apps increasingly leak more types of
PII and to more domains over time, but HTTPS adoption has
seen slow growth. When combining these factors, we find that
about a quarter of apps (26.3%) are getting better with respect to

2We focus only on IP traffic. A recent study [43] showed that less than 1%
of leaks occur over non-IP traffic (i.e., SMS).

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23143
www.ndss-symposium.org

privacy, but twice as many are getting worse over time (51.1%),
with only a small fraction (9.5%) staying the same or exhibiting
highly variable privacy risks between versions (13.1%).

Snapshots of privacy leaks from single versions of apps are
incomplete. For all but 7% of the apps in our dataset, studying
one version will miss PII gathered across all versions of the
app. We also find that the set of PII leaked by an app changes
frequently across versions.

HTTPS adoption is slow. Unlike recent trends in HTTPS adoption
for web traffic [25], we find that apps are slow to adopt HTTPS.
In fact, from the moment we see that a domain first starts
supporting HTTPS, it takes five years for at least half of the
apps in our study to start using it. Overall, the fraction of flows
using HTTPS has remained nearly constant over the time period
covered by our study.

Third-party tracking is pervasive. While previous work using
small snapshots of time demonstrates that third parties collect
substantial amounts of PII, we find the problem to be even
worse when considering PII leaks across versions. We find that
there is little correlation between the amount of traffic to a third
party and the volume of PII it leaks. In addition, we analyze
how third parties (among which several are not highlighted in
previous studies) collect locations, email addresses and gender
along with tracking identifiers, enabling fine-grained tracking of
users and their daily activities.

In summary, our key contributions are: (1) a large-scale
privacy analysis across multiple apps and app versions, (2) a
dataset of network traffic generated by running apps, along with
labels describing the PII contained in them, and (3) an analysis
of the origins and privacy implications of these information
leaks. Our data and analysis are available at https://recon.
meddle.mobi/appversions/.

II. RELATED WORK

A large body of related work has investigated the privacy of
mobile apps and their generated network traffic. Most related
studies focus on identifying personal information that is (or
might be) exposed to other parties over the Internet, using one
or more of the following complementary approaches.

Static analysis. This technique entails analyzing an app’s
bytecode using symbolic execution [58] and/or control flow
graphs [10], [11], [22]. Several academic studies leverage static
analysis to inspect app permissions and their associated system
calls [11], [41], to audit third-party library usage [17], [51], and
to analyze flaws in HTTPS usage and certificate validation [24],
[27]. This approach is appealing because it enables large-scale
app analysis without the overhead of running or interacting with
apps. However, static analysis may identify privacy leaks in
code that is rarely or never executed; further, it cannot analyze
dynamically loaded code, which is commonly used to update
app functionality at runtime in as much as 30% of apps [43].

Dynamic analysis. In contrast to static analysis, dynamic
analysis tracks system calls and access to sensitive information
at runtime. In this approach, the runtime (e.g., the OS) is
instrumented to track memory references to private information
and taint the memory it is copied into. This taint propagates
as the information is copied and mutated; ultimately when it is
copied to a sink, such as the network interface, it is flagged as a

PII leak. TaintDroid [23] is commonly used for dynamic analysis
of Android apps. While taint tracking can ensure coverage
of all PII leaks (even those that are obfuscated), it requires
some form of interaction with running apps to trigger leaks.
Typically, researchers use automated “UI monkeys” [33], [44]
for random exploration or more structured approaches [16], [37]
to generate synthetic user actions; however, prior work showed
that this can underestimate PII leaks compared to manual (human)
interactions [50].

Network traffic analysis. This approach relies on the obser-
vation that PII exposure almost always occurs over Internet
traffic. Thus, network traffic analysis focuses on identifying PII
contained in app-generated IP traffic [40], [49], [50], [52]. The
benefit of this approach is that it works across platforms without
the need for custom mobile OSes or access to app source code,
and thus is easy to deploy to user devices for the purpose of
real-time analysis and detection of PII leaks. A drawback is
that it requires the ability to reliably identify PII (which may be
encrypted and/or obfuscated) in network traffic. All of the above
approaches support TLS interception to access plaintext traffic to
search for PII, but differ in what they search for: most on-device
approaches search for known PII stored on the device [40], [49],
[50], [52], whereas ReCon [50] also uses a machine-learning
approach to infer a broader range of PII that includes user input.
However, these approaches are susceptible to missing PII leaks
from apps that defend against TLS interception, or that use
non-trivial obfuscation or encryption of PII [21].

Longitudinal analysis. Some existing longitudinal studies use
static analysis to study how apps across several categories [54],
and finance apps in particular [53], change over time in terms
of permission requests and security features and vulnerabilities,
including HTTP(S) usage. Similarly, Book et al. conduct a
longitudinal analysis of ad libraries [15], but they focus only on
permission usage. While partially sharing the goals of our work,
these studies do not actually execute and analyze apps, and thus
are subject to both false positives (by looking at permissions
and code paths that are not used) and false negatives (by not
covering code that is dynamically loaded at runtime).

To the best of our knowledge, our study provides the first
longitudinal analysis of privacy risks in network traffic generated
by running app versions that span each app’s lifetime. Our
work complements and substantially extends the related work
presented above: we study privacy across versions (and thus
over time), whereas most previous work consists of one-off
studies that focus on individual versions of apps available at a
certain moment in time. Moreover, since we monitor the traffic
exchanged by actual apps running on real devices, we overcome
some of the limitations of the discussed static and dynamic
analysis approaches.

III. GOALS AND PII DEFINITIONS

The primary goal of this work is to understand the privacy
implications of using and updating popular Android apps over
time. As privacy is a top-cited reason for why users do not install
app updates [55], studying PII leaks from apps across versions
can help users make more informed decisions. Furthermore, this
information can assist regulators when auditing and enforcing
privacy rules for mobile apps [26]. An explicit non-goal of this
work is coverage of all versions of all apps; rather, we focus on
a diverse set of 512 popular Android apps.

2

https://recon.meddle.mobi/appversions/
https://recon.meddle.mobi/appversions/

Unique Identifier (ID) Advertising ID (Ad ID), IMEI, Android ID,
MAC address (MAC Addr), IMSI, Google
Service Framework ID (GSF ID), SIM card
ID (SIM ID), Hardware serial (HW Serial)

Personal Information (User) email address, first and last name, date of birth
(DOB), phone number, contact info, gender

Location GPS location (Location), zip code (Zip)
Credential username, password

TABLE I: List of PII categories and types.

A. PII Considered in This Work

Personally identifiable information (PII) is a generic term for
describing “information that can be used to distinguish or trace
an individual’s identity" [38]. In this paper, we define PII to be
a subset of this, based on textual data that can be gathered and
shared by mobile apps. Specifically, we consider the PII listed
in Table I, which is based on a combination of PII accessible
from Android APIs, user-supplied information, and inferred user
information that was reported as being leaked in network traffic
in previous work [40], [49], [50], [52].

B. Threat Model and PII Leaks

We define privacy risks and PII leaks in the context of the
following threat model. We assume that the adversary seeks
to collect PII from an app running on a user’s mobile device.
The adversary is any party that receives this information via
network connections established when running an app, including
the following:

• App provider, i.e., the company that releases an app, also
referred to as the first party.

• Other parties, e.g., the ones that are contacted by an app as
part of advertising, analytics, or other services, also referred
to as a third party.

• Eavesdroppers, who observe network traffic (e.g., an ISP, an
adversary listening to unencrypted WiFi traffic, or one that
taps an Internet connection).

We define two goals of an adversary that motivate our definition
of PII leak as a privacy risk:

Data aggregation. This occurs when first or third parties collect
information about a user over time, including which apps they
use, how often they use them, where they are located when they
do so, etc. The risk from this kind of information gathering
is that it can be used to build rich profiles of individuals,
which can in turn be used for targeted advertising [14], price
discrimination [36], and other differential treatment driven by
algorithms using this information [35].

Eavesdropping. In this scenario, the adversary learns a user’s
information passively by observing network traffic (e.g., plaintext
PII leaks). This presents a privacy risk to users in that it
constitutes a third party for which the user did not explicitly
consent to collect data. Furthermore, it can constitute a security
risk when information exposed to unauthorized third parties
includes credentials (i.e., username and password).

We define a PII leak as any case in which information
listed in Table I is transmitted to a first or third party, with
the exception of credentials that are sent to a first party via an
encrypted channel. The latter is excluded because it is exclusively
provided intentionally by a user. We cannot in general determine

Number of APKs 7,665 (512 unique apps)
APK release timeframe 8 years
Versions per app (mean) 15.0
Versions per app (median) 14
HTTP(S) flows per app (mean) 94.7
Total HTTP(S) traffic 33.6 GB (pcap format)
Total number of flows 675,898
Unique third-party domains 1,913

TABLE II: Dataset description.

whether other cases of PII are intentionally disclosed to other
parties (and/or required for app functionality), so we include
them in our analysis for completeness. Note that the goal of this
work is to increase privacy transparency, so we leave the decision
as to what constitutes an unintentional and important leak to the
users of our dataset and analysis. To this end, our interactive
tool [1] allows users to set preferences for the importance of
each type of leak.

IV. METHODOLOGY

We identify and analyze PII leaks using network traffic
analysis on flows generated by automated and scripted inter-
actions with multiple versions of popular Android apps. Our
methodology consists of four high-level steps: (1) selecting
apps for analysis, (2) collecting historical and current versions
for each app, (3) interacting with these APKs (i.e., unique
versions of each app), and (4) identifying and labeling PII leaks.
In this section, we discuss each individual step in detail. We
further discuss the assumptions, limitations, and validation of
our approach. Table II summarizes our dataset.

A. App Selection

We selected 512 apps for analysis in this study, using the
following criteria:

• Popularity. We started with the set of apps that was either
in the top 600 popular free apps according to the Google
Play Store ranking, or in the top 50 in each app category, as
of January 10, 2017. We exclude apps that require financial
accounts or verified identities (e.g., bank and credit card
accounts, social security numbers).

• Multiple versions. We considered only apps with more than
three versions compatible with our analysis testbed, which
includes devices running Android 4.4.4 and Android 6.0.
These OS versions run on approximately 50% of Android
devices as of May 2017 [29].

• Amenable to traffic analysis. As discussed in Section IV-C,
we collect both unencrypted (HTTP) traffic and the plaintext
context of encrypted (HTTPS) traffic via TLS interception [8].
We exclude 26 apps (e.g., Choice of Love, Nokia Health Mae
and Line Webtoon - Free Comics) where most versions crash
or hang when opened, or that do not permit TLS interception
as explained in Sec. IV-E.

B. APK Collection

After identifying apps to analyze, we gather their historical
and current versions, and label their release dates.

Finding app versions. Officially, the Google Play Store only
supports the download of the most recent version of each app.
However, Backes et al. [12] reported an undocumented API of

3

the Google Play Store that allows downloads of an arbitrary
version of an app (i.e., its Android Package Kit, or APK, file), as
long as the app’s version code3 is known. The authors identify
several patterns, which we build upon, to identify app version
codes. For the 512 selected apps, we downloaded 7,665 APKs.
Some apps have hundreds of versions, and testing all of them
would be prohibitively expensive. Thus, for apps with more than
30 different versions, we sort their releases chronologically and
pick 30 versions that are evenly distributed across all versions.

Inferring APK release date. The API that we use for
downloading APKs does not provide the release date for each app,
information that is essential for understanding how app behavior
changes over time. To address this, we leverage the fact that
developers who release a new version of an app must update the
version code in several files inside the APK (AndroidManifest.xml
and META-INF/MANIFEST.MF). We thus infer the release date
based on the modification time of these files, which assumes that
the developers’ OS timestamps correctly. Of the 7,665 APKs
we downloaded, 429 APKs had timestamps that were obviously
incorrect (e.g., a date before Android’s first release on August
21, 2008 or a date in the future). For these cases, we manually
checked release dates with several third-party services [2]–[5]
that provide release dates for the last three years.

To understand how well our heuristics work, we manually
cross-validated the release dates of 77 APKs by comparing
the file modification times and release dates found using the
above third-party services [2]–[5]). We find that 88% of inferred
release dates differ with the public record by less than a week,
and only two cases have a difference of 30 days or more. We
investigated these last two cases and found that the difference in
release date is likely due to a developer error, not an incorrect
inference. Namely, these are cases where the developer released
a new version of the app without updating the version string
in the APK. As a result, the date from the third-party services
did not correspond to the APK we investigated. The average
interval between each update across apps is 47 days, with a
standard deviation of 181. Note that 21% of the 512 apps were
first released before January 1st, 2012 and exactly half were
released before August 22nd, 2014.

C. Interaction and Traffic Collection

In this step, we interact with each APK and collect the
network traffic generated as a result from these interactions.

Test environment. We conduct experiments using five
Android devices: one Nexus 6P phone and one Nexus 5X phone,
both with Android 6.0.0; and three Nexus 5 phones with Android
4.4.4. We use real Android devices instead of emulated ones to
avoid scenarios where apps and third-party libraries detect the
analysis environment and modify their behavior accordingly. It
has been shown that emulators are easy to fingerprint [47], [57],
a fact that is exploited for example by ad libraries to only show
ads and leak data when executed on a real device [46].

Interaction with apps. Measuring PII leaks from apps
requires interacting with them, and the gold standard for doing so
is via natural human interaction. However, manually interacting
with each of the selected 512 apps (7,665 unique versions) is

3An integer value that can be incremented by arbitrary values from one
version to the next.

not practical. Thus, we use Android’s UI/Application Exerciser
Monkey [33], a tool that automatically generates pseudo-random
UI interaction events (swipes, taps, etc.) for an app. While a
number of other approaches for automation have been proposed,
a recent study [18] showed that Monkey exhibited a better cov-
erage in terms of code coverage and fault detection capabilities
than other automated tools. Completely random events would
prevent apples-to-apples comparison among versions of the same
app, so we specify the same random seed that generates the
sequence of events for interaction with all of an app’s versions.4
Specifically, we use Monkey to generate approximately 5,000
user events by specifying five seeds for 1,000 events each.5 We
use 5,000 events because it allows us to test a large number of
APKs in a reasonable amount of time, and because previous
work [42] found that longer interaction times do not substantially
impact the set of PII that leaked. We cross-validate our dataset
with human interactions in Section IV-F.

Many apps (75 in our study) require users to log in with a
username and password before accessing app functionality. Thus,
failure to login can severely underestimate the amount of PII
leaked. We created accounts for testing with each of these apps,
but manually logging into each version is prohibitively expensive.
We avoided this by recording the login events in one version
and replaying the events in other versions using RERAN [28].
We perform both record and replay of login actions on the same
device to ensure a consistent UI layout.

Recording network traffic. For each experiment, we run
one app at a time. To collect network traffic while interacting
with the apps, we redirect the traffic to a proxy server that
records plaintext traffic and that uses TLS interception (using
mitmproxy [8]) to record the plaintext content of HTTPS requests.
For apps that prevent TLS interception via certificate pinning,
we use JustTrustMe [7], a tool that modifies Android in such a
way that certificate validation using built-in OS libraries always
succeeds. We test such apps only on devices running Android
4.4.4 (the Nexus 5 phones) because JustTrustMe does not support
later OS versions.

D. Privacy Attributes

After the completion of the experiments, we analyze network
traffic according to the following three privacy attributes to assist
in our subsequent analysis of network flows.

1) PII Leaks: We label each flow with the PII that it leaks
in two phases. First, we use simple string matching to identify
PII that is static and known in advance (e.g., unique identifiers,
personal information, zip code, and credentials). This approach,
however, cannot be reliably applied to dynamic values (e.g.,
fine-grained GPS locations) and to data not directly input into
an app (e.g., gender).

For these cases, we use ReCon [50], which uses machine
learning to infer when PII is leaked without needing to rely on
exact string matching. The key intuition behind ReCon is that
PII is often leaked in a structured format (e.g., key/value pairs

4Note that we do not explicitly account for changes in UI or functionality over
time because doing so requires manual analysis and is infeasible at this scale.
However, we rely on the randomness of Monkey to probabilistically exercise
UIs and functionality as they change.

5Batches of events were required to give apps sufficient time to process
events; failure to do so led to crashes or exits before the events completed.

4

such as password=R3Con or adId:93A48DF23), and that
the text surrounding PII leaks can become a reliable indicator
of a leak. ReCon therefore uses a classifier to reliably identify
when network traffic contains a leak (e.g., in a simple case,
looking for password=), without needing to know the precise
PII values. We manually validated all cases of inferred PII leaks
to ensure their correctness.

2) Transport Security: This study focuses exclusively on
HTTP and HTTPS traffic. In addition to the standard ports 80
and 443, we also include port 8080 for HTTP traffic and ports
587, 465, 993, 5222, 5228 and 8883 for HTTPS traffic. We find
that only 0.5% of the flows in our dataset use other ports.

3) Communication with First and Third Parties: An impor-
tant privacy concern is who receives the PII. In a network flow,
this corresponds to the owner of the traffic’s destination. We
distinguish between first-party second-level domains (hereafter
simply referred to as domains), in which case the developer of
an app also owns the domain, and third-party domains, which
include ad networks, trackers, social networks, and any other
party that an app contacts. For instance, facebook.com is a
first party to the Facebook app, but it is a third party to a game
app that uses it to share results on Facebook.

Our domain categorization works in two steps. We first take
all the domains that we observed in our experiments and build
a graph of these domains, where each node represents a domain
and each edge connects domains belonging to the same owner.
We then match the owner of each connected subgraph of domains
to the developer of an app and consequently label them as first-
party domains for that app. Our approach is similar to related
work focusing on identifying the organizations behind third-
party ad and tracking services [56], which found that current
domain classification lists are incomplete and too web-centric
to accurately identify mobile third-party domains.

Ownership of domains. To identify a domain’s owner,
we leverage WHOIS information, which contains the name,
email address and physical address of the registrant unless the
registration is protected by WHOIS privacy. As a preprocessing
step, we thus first discard any WHOIS entries that are protected
by WHOIS privacy. We then connect domains as belonging to the
same owner based on (1) the registrant’s name and organization,
and (2) their email address (excluding generic abuse-related
email address from the registrar). This method allows us to
group together disparate domains that belong to the same owner,
e.g., we can identify instagram.com, whatsapp.com and
atlassbx.com as Facebook-owned services.

Ownership of apps. To identify the developer of an app,
we use information from the Google Play Store listing, which
contains the name of the developer, and optionally their website,
email address and physical address. Some developers use third-
party services (e.g., Facebook pages) in lieu of hosting their
own website, or free email providers, such as Gmail. We filter
out such cases from our analysis. Since Google recommends
using “Internet domain ownership as the basis for [...] package
names (in reverse)” [30], in the simplest case the package name
embeds one of the developer’s domains. Otherwise, we compare
the developer information from Google Play against WHOIS
records for a domain as detailed below.

First-party identification. We identify traffic to a domain
as first party when information about the owner of the domain

matches information about the owner of an app. We label any
domain collected from the app’s Google Play Store listing as first
party, as well as the domain in the app’s package name. We also
label as first party any domains that are registered to the same
name, organization, physical address, or email address as the
ones listed for the developer in Google Play. To account for any
inconsistencies in the representation of the physical addresses,
we first convert them with geopy [6] to their coordinates through
the Google Geocoding API [31].

Third-party identification. We label as third party all the
domains that have not been labeled as first party according to
the previous paragraph. This includes ad and tracker domains,
content hosting services or any third-party domain an app
contacts to fetch content.6 Our classification is skewed towards
finding potential third-party services; we validate parts of our
approach in Section IV-F.

E. Assumptions and Limitations

Our approach uses several assumptions and heuristics to
inform our longitudinal analysis of privacy across app versions.
We now discuss these assumptions and the corresponding
limitations of our study.

Coverage. We do not cover all apps or all app versions, but
rather focus on a set containing many versions of popular apps
across multiple categories of the Google Play Store. We believe
this is sufficient to understand privacy trends for important apps,
but our results provide at best a conservative underestimate of
the PII exposed across versions and over time.

TLS interception. TLS interception works when apps trust our
self-signed root certificates, or when they use built-in Android
libraries to validate pinned certificates. We are also constrained
by JustTrustMe. As a result, we cannot intercept TLS traffic for
11 apps that possibly use non-native Android TLS libraries (e.g.,
Dropbox, MyFitnessPal, Snapchat, Twitter) [48].

Obfuscation. Due to the inherent limitation of network traffic
analysis, we do not detect PII leaks using non-trivial obfuscation,
as it requires static or dynamic code analysis. In such cases, we
will underestimate PII leaks. However, we do handle non-ASCII
content encodings and obfuscation. For the former, we examine
the Content-Encoding field in the HTTP header, and decode gzip
flows (2.5% of total flows). We further decode content using
Base64 but did not find any additional leaks using this encoding.
For the latter, we apply standard hash functions (MD5, SHA1,
SHA256, SHA512) on our set of known PII, and match on the
result. This yielded 4,969 leaks (4.3% of all leaks observed in
this study) in 4,251 flows.

Testing old versions today. We assume old versions of apps
exhibit the same behavior today as when they were initially
released. However, for a variety of reasons (e.g., different
behavior of the contacted domain, or domain being no longer
available), this might not always be true. It is likely that this
means we will underestimate the PII leaked by apps (e.g., if a
domain does not resolve to an IP).

6This includes domains provided to their customers by Google App Engine
or Amazon Web Services. We argue that even if the services running on these
platforms belong to a first party, communication to these platforms should
still be considered third-party communication because developers do not have
ownership of, or full control over, the platform.

5

Because we could not run old versions of these apps at the
time they were released, we must use heuristics to determine
whether our analysis might be impacted by such factors. During
the course of our experiments, we found that the behavior of
leaks and domains contacted did not change significantly over
several months; as such, we do not think this is an issue for
recently released app versions.

For older versions of apps, we assume that DNS and HTTP
failures potentially indicate apps that no longer function similarly
to when they were first released. Thus, we exclude APKs for
which more than 10% of DNS requests fail or 10% HTTP
responses are error codes (4xx or 5xx response codes). This was
the case for 15 apps (2.8% of the original selected apps).

F. Validation

To improve confidence in the accuracy and representativeness
of our measurements, we validated several critical aspects of
our approach as follows.

Automated interaction. A limitation of automated interac-
tions with apps is that they may not elicit the same privacy-related
behavior as user interactions. To estimate this gap, we compare
our results with those from the natural human interactions
made available by the Lumen [49] project, which provides
on-device privacy analysis and has thousands of users. Lumen
maps network flows to the source APKs and destination domains,
and also labels any PII that matches those stored on the device.
We found 983 APKs that appear in both our and Lumen’s
datasets and 380 of which leaked PII in both studies. The latter
corresponds to 122 distinct apps (24% of the 512 apps in this
study) that cover 23 app categories. On average, our dataset
missed 0.41 PII types per APK found by Lumen, with a range
of 0–3 missing types from automated tests. The most frequently
missed types include Android ID (52%), email (15%), MAC
address (12%) and IMEI (11%). Similarly, the number of unique
domains and protocol pairs per app missed by our automated
tests compared to Lumen is 2.36 (standard deviation of 4.42).
On the other hand, Lumen missed on average 1.38 PII types per
APK that our approach found (with a range of 0—6 types). The
most common missed types are advertiser ID (27%), hardware
serial (18%), Android ID (15%) and Location (15%). In summary,
human interactions find different PII leak types and traffic to
different domains, as expected; however, the gap between these
two datasets is relatively small on average. As a result, we
believe our analysis covers most of the behavior one would
expect to see in the wild.

Repeatability. A potential problem of our study is that our
automated tests use only one round of 5,000 interaction events
for each APK. It is unclear a priori whether this approach will
yield similar results over time, and thus might be biased in
some way. To test whether this is the case, we repeated the
experiments for the five apps (105 APKs) that have a large
variance in leaked PII types across versions. In particular, we
performed a pairwise comparison between the PII types leaked
by different versions of each app and selected the apps with
the largest number of distinct sets of PII types across versions.
For each APK, we performed the same experiment each day
at approximately the same time of day, for ten days. After we
collect the traffic ten times, we compare the number of unique
PII leak types, the number of domains contacted, and the fraction

of flows using HTTPS. We find that the change in results over
repeated experiments is small: for more than 90% of tested
APKs, the variation across experiments is generally no more
than one PII type, two domains, and a fraction of HTTPS traffic
of no more than 6.0%.

Domain categorization. Our approach to distinguish between
first-party and third-party domains largely relies on WHOIS data,
which is known for its incompleteness and noise. To validate our
approach we manually verified the domain classification for a
subset of 20 apps, which we selected randomly from all apps that
leak PII and contacted more than one domain in our experiments.
We inspected 550 app/domain pairs (343 unique domains), 60
of which our approach labeled as first-party domains and the
remaining 490 as third-party domains. We find that all of these
first-party labels are indeed correct, with only a small number
of false negatives: our approach missed 5 first-party domains
for 3 apps. Overall, we find those results encouraging as our
study is focused on analyzing third-party services.

V. LONGITUDINAL ANALYSIS

This section presents our analyses and findings regarding
changes in PII leaks across app versions and time. Section V-A
presents the case of a single notable app (Pinterest). In Sec-
tion V-B, we provide a summary of all the PII leaked across all
APKs in our dataset. Section V-C focuses on how specific types
of PII are leaked over time for each app. We analyze trends in
HTTPS adoption and third-party destinations in Sections V-D
and V-E. Section V-F summarizes our key findings.

A. A Notable Example: Pinterest

To demonstrate our analysis of privacy attributes, we use the
Pinterest app as an in-depth example. In Figures 1a and 1b we
show how PII leaks and network flows with third-party services
change in the Pinterest app across different versions.7 In the
plots, each app version is identified by a different version code
on the x-axis, sorted in ascending chronological order.

Figure 1a shows how many times each PII type is leaked
across all network flows for each version, where the y-axis for
each time series represents the number of times it is leaked
during an experiment. The number below the PII type is the
maximum number of times any version of Pinterest leaked the PII
type. The stacked bars are colored according to the domain type
and protocol. The plot shows that the app sends user passwords
to a third party8 and starts leaking gender, location, advertiser ID
and GSF ID in more recent versions. In addition, the frequency
of Android ID leaks increases by two orders of magnitude.

B. Summary of Results

This section focuses on a summary of PII leaked across all
versions (APKs) of all apps that we tested, and their implications
for privacy risks over time.

Table III depicts our results, where each row is a PII type,
and each column counts the number of instances falling into a
given category. The table is sorted in descending order according
to the number of apps leaking each type.

7Similar plots for every app in our dataset can be found online [1].
8We responsibly disclosed this security bug, which Pinterest confirmed and

fixed in later versions not included in this study.

6

Leaks Overall Leaks to First Party Leaks to Third Party
PII Type HTTP HTTPS HTTP HTTPS

#Apps %Apps #APKs %APKs #Apps #APKs #Apps #APKs #Apps #APKs #Apps #APKs
Ad ID 314 62.2% 2,270 29.8% 23 115 32 227 149 700 282 2,037
Location 268 53.1% 1,577 20.7% 27 258 41 301 96 450 209 778
HW Serial 254 50.3% 1,157 15.2% 10 81 21 154 28 170 227 832
IMEI 167 33.1% 1,597 21.0% 45 443 32 250 62 505 123 1,073
Android ID 124 24.6% 1,225 16.1% 18 163 28 272 54 423 104 957
GSF ID 108 21.4% 504 6.6% 0 0 9 68 0 0 99 436
MAC Addr. 71 14.1% 649 8.5% 8 105 12 116 38 307 25 173
Gender 65 12.9% 257 3.4% 6 68 5 16 35 106 42 134
Email 43 8.5% 280 3.7% 12 97 21 124 3 19 14 58
Password 13 2.6% 84 1.1% 6 48 N/A N/A 0 0 7 36
Last Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22
First Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22
PhoneNo. 3 0.6% 18 0.2% 0 0 2 15 0 0 2 7
SIM ID 2 0.4% 9 0.1% 2 9 0 0 0 0 0 0
Any PII Type 505 7611 - - - - - - - -

TABLE III: Summary of PII types leaked by apps/APKs, sorted by number of apps. The majority of apps and APKs leak at
least one PII type. The fractions for the APKs are significantly lower than the ones for the apps, indicating that not every version
leaks PII. Unique IDs and locations are the most common leaks across apps. Unique IDs are leaked to third parties much more
often than to the first party, given the free monetizing model using ads. We also found 13 cases of password leaks.

1st/HTTP
1st/HTTPS
3rd/HTTP
3rd/HTTPS

2 3 4
20

3
 2

71

30
1

40
2

50
2

60
20

1
60

31
02

60

40
52

60

60
62

Version

Password(2)

Gender(3)

Location(4)

Android ID(232)

GSF ID(1)

Ad ID(12)

(a) PII types by destination type and protocol.
HTTP
HTTPS

2 3 4
20

3
27

1
30

1
40

2
50

2
60

20
1

60
31

02

60
40

52

60
60

62

Version

pinterest(235)
google(3)

flurry(9)
branch(4)

crashlytics(2)
adjust(2)

yoz(3)
pinimg(3)

doubleclick(2)
target(2)

facebook(1)

(b) Domains by protocol.

Fig. 1: Example app privacy attributes for Pinterest. The
x-axis corresponds to chronological versions of the app. In (a),
the y-axis of each stacked bar plot is the number of times a
version leaks a PII type, and the bar plots are colored according
to the domain type and the communication channel; in (b), the
y-axis of each stacked bar plot is the number of times a version
contacts a domain, and the bar plots are colored according to
protocol. For (a) and (b), the number in parentheses to the left of
each y-axis is the maximum y value across all versions. Similar
plots for other apps can be found on our website [1].

The first two columns show the number of apps and APKs
leaking each PII type. In line with previous work [50], we find
that the most commonly leaked PII types are unique identifiers
(more than half of all apps leak an advertiser ID and/or hardware

serial number) and locations (53.1% of apps). We nonetheless
still find a substantial fraction of apps (more than 10%) leaking
highly personal and security-sensitive information such as email
addresses (often to analytics services such as kochava.com and
crashlytics.com), phone numbers (e.g., collected by crash-
lytics.com, segment.io, and apptentive.com), and gender.
However, when focusing on APKs (2nd column), we find that
substantially lower fractions leak each PII type—indicating that
most PII types are not leaked in every app version. We explore
this phenomenon in more detail in Section V-C. In the table
we can also see that there are 13 apps leaking passwords: 6
apps leak passwords in plaintext, and 7 apps send passwords
to third-party domains. Of these apps, in the latest version we
tested (not shown in the table), we discovered that 4 apps still
leak plaintext passwords (Meet24, FastMeet, Waplog, Period &
Ovulation Tracker).9

The next group of columns focuses on the number of apps
and APKs leaking each data type to a first party, either via
HTTP or HTTPS. Here we find that there is no clear pattern
for HTTPS prevalence for PII leaks to first parties, except for a
clear (and easily explained) bias toward password encryption.
When compared with the third column group (“Leaks to Third
Party”), it is clear that the vast majority of instances of PII leaks
go to third parties (with the exception of passwords, with small
but nonzero occurrences). This is likely explained by the fact
that PII is typically harvested to monetize users via targeted
ads, often over HTTPS. This result is a double-edged sword:
encryption improves privacy from network eavesdroppers, but it
also frustrates attempts by stakeholders (e.g., users, researchers,
and regulators) to audit leaks.

To understand whether certain categories of apps are rela-
tively better or worse for privacy, we grouped them by category
as reported in the Google Play Store.10 Table IV provides results
for the top five and bottom five categories in terms of the average
number of PII types that are leaked by apps in the category.
We find that the categories that leak the largest number of

9We responsibly disclosed these leaks to the developers (multiple times over
a period of months) and received no response.

10We only used the category of the most recent version of the app we tested,
even if the app was assigned a different category in a previous version.

7

App Category Apps APKs #PT #PI #3PD %S

Food & Drink 2 50 2.9 26.3 7.1 52.7
Dating 6 108 2.3 38.4 10.0 60.7
Lifestyle & Beauty 9 137 2.0 40.9 10.7 65.7
Games 76 1231 2.0 70.8 9.7 61.2
Finance 3 28 1.9 42.3 8.2 96.8
...
Auto & Vehicles 7 122 0.8 4.6 8.8 84.9
Weather 10 177 0.8 88.5 7.3 47.7
Libraries & Demo 4 51 0.7 29.6 4.1 82.2
Art & Design 6 101 0.7 7.7 5.2 69.3
Events 6 104 0.6 7.9 5.7 95.6

TABLE IV: Average privacy attributes per app category,
sorted by number of unique PII types (PT) leaked. Only
the top and bottom five categories are shown. PI refers to the
number of instances of PII leaks, 3PD refers to the number of
second-level third-party domains contacted, and S refers to the
fraction of HTTPS flows. Dating and Food & Drink apps are
among the worst in terms of number and types of PII leaks, and
these substantial fractions of their flows are unencrypted.

PII types or cases (and contact the most third-party domains)
include Lifestyle & Beauty, Games, Finance, Entertainment and
Dating, while Art & Design and Events leak the fewest. With
the exception of Finance, the apps that leak the most PII types
also send a significant fraction of their traffic (34–47%) without
encryption, thus exposing PII to network eavesdroppers.

C. Variations in PII Leaks

Since privacy risks across versions of an app rarely stay
the same, a study that looks into a single version of an app is
likely to miss PII leaks affecting a user that regularly uses and
updates the app. In this section, we first quantify how many PII
leaks previous work may miss by focusing on one version, and
then we quantify how the frequency of PII leaks changes across
versions and time.

PII leaks across versions. In Figure 2a we show the CDF
describing the minimum, average, and maximum number of
distinct PII types leaked by individual apps across all their
versions (Min, Average, Max curves); and the CDF describing the
number of distinct PII types leaked during the whole lifetime of
the app (i.e., the union of its versions – Union curve). By looking
at the plot, we find a substantial gap between the maximum
number of PII types leaked by an app version and the minimum,
validating our hypothesis that a study using a single version of
an app is likely to miss a substantial number of PII leaks. Even
when focusing only on the version of an app that leaks the most
PII types (Max curve), there is a substantial fraction of cases
(37%, not shown in the figure) that miss at least one type of
PII leaked by a different version. The average curve is strictly
to the left of the union curve, indicating that a study using an
arbitrary app version is likely to miss at least one type of PII.
In summary, for all but 7% of the apps in our dataset, a study
using only one version is guaranteed to underestimate the PII
gathered over the lifetime of the app.

Privacy severity and changes over time. The previous
analysis shows that PII leaks change over time, but do not give
a clear picture of whether these changes lead to greater or less
privacy risk for users. We propose addressing this by assessing
the risk of PII leaked according the severity of each leaked

type. We begin by assigning PII types to n groups, each of
which has similar severity. These groups can be represented
as an n-dimensional bit vector; for each APK we set the mth
most significant bit to 1 if the APK leaks PII with severity m;
we set the bit to zero otherwise. Importantly, when this vector
is interpreted as an integer, it follows that privacy is getting
worse if the integer value increases between versions, better if
it decreases, and is unchanged if the value is the same.

To provide an example of how this representation informs our
analysis, we use the categories of PII in Table I and define PII
severity levels in the following order (from highest to lowest):
password (plaintext or to a third party), username, personal
information, geolocation, unique identifier. For example, consider
Pinterest (Fig. 1a). Version 2 has a vector of 00001, version
60201 has a vector of 00101, 603102 has 10101, and 604052
has 00111. Note that we picked these values because they
seemed reasonable to us; however, our online interactive tool [1]
allows individuals to explore different relative severity levels
and their impact on whether privacy is getting better or worse.

Figure 2b shows a CDF of every APK’s PII severity score
based on this bitmap representation. We find that nearly two
thirds of APKs leak PII, but almost half of those leak only
unique IDs. We also find a small fraction of APKs leaking very
sensitive information such as passwords (x > 15). To understand
how the severity of PII leaked by each app changes over time,
we find the slope of the linear regression of these scores for the
time-ordered set of APKs belonging to the same app. If the slope
is positive, PII leak severity increased over time, negative means
it decreased, and values of zero indicate no change. Figure 2c
shows a CDF of these slopes for each app. The results indicate
leak severity is more likely to increase (43.6%) than decrease
(36.4%), and does not change for a fifth of apps.

Frequency of PII leaks. The previous paragraphs covered
how many versions leaked each PII type at least once, but not
how frequently each version leaked it. This is an important
distinction because frequently leaked PII can heighten privacy
risks—whether it is fine-grained location tracking over time,
or increasing opportunities for network eavesdroppers to learn
a user’s PII from unencrypted traffic. Our analysis is in part
motivated by findings from Harvest, a documentary film that
used ReCon [50] to identify PII leaked over the course of a
week from a woman’s phone.11 Specifically, her GPS location
was leaked on average once every two minutes by the Michaels
and Jo-Ann Fabrics apps. This behavior, thankfully, was isolated
to one version of the apps; however, it raises the question of
how often such “mistakes” occur in app versions.

To explore this issue, we first investigate the average
frequency (i.e., number of times) that each PII type is leaked
by an app over time (Table V). For each app that leaks a given
PII type, we calculate the mean and standard deviation of the
number of times each PII type leaks across versions. The table
shows that Android ID, Location, and Advertising ID are leaked
most frequently on average, and also see the largest variance in
terms of the number of times they are leaked.

We further investigate whether there are cases of egregious
volumes of PII collection. To isolate this behavior, we calculate
the difference between the minimum and maximum number of

11https://www.harvest-documentary.com

8

https://www.harvest-documentary.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F
 o

f
A

p
p
s

Number of PII Types

Min
Average

Max
Union

(a) Number of unique PII types per app.
Minimum, average, and maximum number
of PII leaks across versions; and size of
the union of PII leaked across versions, as
defined in Section V-C.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5

 1
0

 1
5

 2
0

 2
5

C
D

F
 o

f
A

P
K

s

PII Severity Score

(b) PII severity score per APK. Most
APKs leak at least one PII type; fortunately,
high-severity PII leaks are rare.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-4 -3 -2 -1 0 1 2 3 4

C
D

F
 o

f
A

p
p
s

Slope

(c) PII severity score trend per app. Posi-
tive values (43.6% of apps) indicate that leak
severity increases over time, negative values
(36.4%) indicate the severity decreases. We
see no change for 20% of apps.

Fig. 2: Privacy trends by PII type and severity across versions and over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

C
D

F
 o

f
A

P
K

s

Difference in Leak Frequency

Android ID
Location

Ad ID
IMEI

GSF ID

(a) Largest frequency difference
(logscale) per app. There is a substantial
fraction (5.6%) of apps that exhibit a
several orders of magnitude difference in
the frequency of PII leaks across versions.

 0

 20

 40

 60

 80

 100
 5

 2
5

 1
2
5

 6
2
5

 3
1
2
5

C
D

F
 o

f
D

o
m

a
in

s

Number of Days

Θ=10%
Θ=50%
Θ=90%

(b) CDF of days over Θ% of apps to
adopt HTTPS per domain. Apps adopt
HTTPS extremely slowly: for half of the
domains, it takes over two years for only
10% of apps to adopt HTTPS; and five years
for over 50% of apps.

 0

 20

 40

 60

 80

 100

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

C
D

F
 o

f
A

p
p
s

Slope

HTTPS Traffic
HTTPS Leaks

(c) CDF of the slope of %HTTPS of traf-
fic/leaks per app. Positive values indicate an
increase from the first version; negative values
indicate the opposite. HTTPS adoption does not
change much for most apps over time, and there
is no clear trend showing increased adoption.

Fig. 3: Privacy trends by PII frequency and HTTPS adoption across versions and over time.

PII Type #Apps Mean (Mean) Standard Deviation (Mean)

Ad ID 286 16.29 12.42
Location 256 20.33 11.63
Android ID 119 12.70 9.53
MAC Addr. 56 6.27 6.16
IMEI 140 7.87 5.68
GSF ID 109 8.55 5.37
Email 36 7.42 2.99
Gender 63 4.99 1.81
Password 13 2.48 0.92
HW Serial 240 2.16 0.76

TABLE V: Frequency of apps leaking each PII type, sorted
by the mean of the standard deviation. For each app, we
calculate the mean and the standard deviation of the number of
times each PII type leaks across versions. We show the mean
of both across apps. The table shows that location and unique
IDs are the most tracked information, and that the number of
times they leak takes on a wide range of values.

times each PII is leaked for each version, across all versions of
an app. Figure 3a shows the CDF of this difference over all apps
in our dataset. While the majority of apps see small differences
in the frequency of leaks, there is a substantial fraction (5.6%)
that exhibit a several orders of magnitude difference. To put
this in context, some versions of apps leak PII once every 1

to 10 seconds on average during an experiment. Example apps
include AccuWeather, Learn 50 Languages, Akinator the Genie
FREE, and JW Library, which leak either location or unique ID,
or both, nearly constantly.

In summary, not only are the types of PII leaks changing
across versions, but also the number of times it is leaked over
short periods of time. This has significant privacy implications
for users who do not want their online activity and locations
tracked with fine granularity.

D. HTTPS Adoption Trends

Given developments in the US and abroad concerning privacy,
including reports of widespread Internet surveillance [13] and
recent legislation permitting ISPs to sell user information gleaned
from network traffic [45], there has been a push to encrypt
Internet traffic to the greatest extent possible. Given the vast
amount of personal information stored on mobile devices,
HTTPS adoption by mobile apps can be perceived, at first,
as a positive industry move. In this section, we investigate the
extent to which apps adopt HTTPS across versions.

Aggregate results. We begin by studying the extent to which
apps (across all versions) exclusively use HTTP and HTTPS, or
some combination of the two. We group results according to

9

Party App/Domain
Pairs (#Apps)

HTTP HTTPS Both

All 12,143 (505) 3,559 (29.3%) 6,791 (55.9%) 1793 (14.8%)
First 703 (338) 268 (38.1%) 225 (32.0%) 210 (29.9%)
Third 11,440 (502) 3,291 (28.8%) 6,566 (57.4%) 1583 (13.8%)

TABLE VI: Summary of domains by protocol. The domains
are separated into those that use HTTP only, HTTPS only, and
both protocols. The majority of all flows use HTTPS, but this is
largely due to communication with third-party sites. Substantial
fractions of domains see flows without encryption and only a
third of first party domains exclusively use HTTPS.

the destination second-level domain. Table VI shows the results
of our analysis for all domains, as well as those previously
identified as either first or third party. Across all app/domain
pairs, we see that HTTPS-only adoption is the dominant behavior,
with substantial fractions of app/domain pairs that use HTTP,
and a relatively small fraction that use both HTTP and HTTPS
for the same domain. The latter case is particularly interesting,
because we know the domain supports HTTPS but for some
reason some of the connections are established using plaintext.12

When focusing on first- versus third-party communication,
we find that most of the HTTPS adoption comes from traffic to
third-party domains. In contrast, first-party domains are nearly
evenly distributed across the three categories. It is not clear
why third parties use encryption more often, but reasons might
include improving privacy from eavesdroppers, ensuring integrity
against man-in-the-middle attacks, or making it more difficult
to audit the information they gather. Likewise, the increased
prevalence of mixed HTTP(S) usage for first-party domains
might be due to reasons such as scarce resources for handling
TLS connections, lack of need to secure content transfers, and/or
mismanagement from small operators.

Speed of HTTPS adoption. We now focus on the domains
that we know support HTTPS because we saw at least one
flow from one APK that uses HTTPS for that domain. Once
a domain supports HTTPS at a given date, we expect that any
APKs contacting that domain in the future should be able to use
HTTPS. However, there are many reasons why HTTPS adoption
may not occur immediately for all other apps (e.g., due to using
old versions of third-party libraries, or due to policy decisions
to limit use of HTTPS). In Figure 3b, we investigate how long
it takes a certain fraction (Θ%) of apps to adopt HTTPS for a
domain, relative to the first day the domain supports HTTPS.
The graph clearly shows that HTTPS adoption in mobile apps
is exceedingly slow: for half of the domains we studied, it takes
more than two years for only 10% of apps to adopt HTTPS. To
achieve 50% HTTPS adoption (Θ = 50% curve), it takes five
years from the moment the domain starts supporting HTTPS.13

This is in stark contrast to web traffic, where the only requirement
for widespread HTTPS adoption is that the server supports TLS
and makes it the default way to access the site.

The key take-away is that improving privacy for the content
of app-generated traffic through HTTPS adoption is a slow
process. This may explain why recent efforts by app stores

12e.g., the overhead of maintaining and establishing TLS connections, to
permit caching of static content, or because HTTP URIs are hard-coded in apps.

13The curves for Θ=75% and 90% are nearly identical to 50%.

to require HTTPS by default (or otherwise discourage HTTP
use) [20], [39] have faced delayed enforcement [9].

Fraction of HTTPS traffic over time. While the previous
paragraphs focus on how long it takes apps to start using HTTPS,
we now focus on the question of the fraction of app-generated
traffic using HTTPS over time. We analyze this by producing
a time series of the fraction of flows that use HTTPS across
versions of each app in our study. We then find the slope of
the linear regression of this fraction for each app, and plot the
CDF of these values as the red line in Figure 3c. Positive values
indicate an increased fraction of HTTPS traffic over time for an
app, while negative values indicate a decreased fraction. The
figure shows two key trends. First, most of the values are near
zero, indicating that HTTPS adoption does not change much over
time. This is consistent with our results above. Second, with the
exception of outliers, the number of apps that use more and less
HTTPS over time are essentially equal—implying no evidence
to support an increasing overall trend of HTTPS adoption as
seen in web traffic [25].

A particular concern for plaintext traffic is when it contains
users’ PII, as they might be exposed to eavesdroppers in addition
to the destination domain. We now investigate whether, over
time, apps are increasingly using HTTPS when flows contain PII,
to mitigate this additional privacy risk. Similar to the previous
analysis, we do this using the slope of the linear regression for
the fraction of PII leaks over HTTPS across versions of an app.
The blue line in Figure 3c plots the CDF of this slope over all
apps. Again, we find that the dominant trend is that HTTPS
adoption does not change much over time, even for PII leaks.

E. Third-Party Characterization

In this section, we focus on the third parties that gather PII
from apps, what information they gather across all apps in our
study, and the implications of this data collection.

Summary of PII leaks. We now focus on the information
gathered by third parties across all apps and versions in our
study. We summarize our findings in Table VII, which shows
information about PII leaks to third-party domains, sorted by
the number of unique PII types gathered across all APKs. We
show only the top 10 domains due to space limitations.

The table highlights a variety of domains that engage
in broad-spectrum user tracking, usually focusing on unique
identifiers, but also including sensitive information such as phone
numbers and locations. Interestingly, there is little correlation
between the number of flows to a domain and the number of
those flows containing PII. For example, vungle.com leaked
PII in 780 out of 1,405 flows, while doubleclick.net (one of
the most frequently contacted domains) leaked PII in only 5%
of its flows (not shown in the table). The table also shows that
many domains receive more than one type of tracking identifier
(e.g., Ad ID, Android ID, IMEI, GSF ID, IMEI), which allows
them to continue to uniquely identify users even if the Ad ID is
reset by a user. Other third-party domains, such as CDNs, are
frequently contacted, but do not receive PII (e.g., fbcdn.net,
idomob.com, ytimg.com).

Domains contacted over time. In addition to studying the
PII leaked to each domain, it is important to understand how
many domains apps contact over multiple versions and how this

10

Domain #Flows #PII Leaks #Apps # APKs PII Types

google[*] 170,374 22,383 369 1937 HW Serial, Location, IMEI, Ad ID, GSF ID, Android ID, Gender, MAC Addr.,
First Name, Last Name

crashlytics.com 6,653 1,146 110 621 Ad ID, Android ID, PhoneNo., HW Serial, Email, IMEI
vungle.com 1,405 780 21 132 Ad ID, Location, Android ID, HW Serial, MAC Addr., Gender
adjust.com 1,186 650 31 176 Ad ID, Android ID, IMEI, Password, HW Serial, MAC Addr.
supersonicads.com 791 613 9 36 Ad ID, HW Serial, IMEI, Location, Android ID, MAC Addr.
amazon-adsystem.com 1,315 438 15 71 MAC Addr., HW Serial, Android ID, IMEI, Ad ID, Location
kochava.com 633 338 21 80 Android ID, Ad ID, IMEI, Email, MAC Addr., Gender
tapjoyads.com 5,503 5,390 43 440 IMEI, MAC Addr., HW Serial, Android ID, Ad ID
mopub.com 7,560 3,657 38 235 Ad ID, Android ID, Gender, Location, IMEI
applovin.com 5,591 2,360 26 149 Ad ID, Android ID, IMEI, Gender, Location

TABLE VII: Top 10 third-party domains by flows and leaks across all apps, sorted by the number of PII types, then the
number of PII leaks (see full table online [1]). Third-party domains track mostly unique identifiers and there is little correlation
between the total number of flows and the number of flows containing PII. We group the following domains as google[*]: google.com,
googleapis.com, doubleclick.net, google-analytics.com, gstatic.com, googleusercontent.com, googleadservices.com.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 1
2

0

 1
4

0

C
D

F
 o

f
A

P
K

s

#Unique Domains

(a) Number of unique domains per
APK. The vast majority of APKs contact
more than one domain, and more than a
quarter contact 10 or more domains.

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2
0

1
/0

1
/1

2

0
7

/0
1

/1
2

0
1

/0
1

/1
3

0
7

/0
1

/1
3

0
1

/0
1

/1
4

0
7

/0
1

/1
4

0
1

/0
1

/1
5

0
7

/0
1

/1
5

0
1

/0
1

/1
6

0
7

/0
1

/1
6

0
1

/0
1

/1
7

N
u

m
b

e
r

o
f

D
o

m
a

in
s

(b) Time series of average number of unique
domains receiving PII leaks, bucketed by
month. The number has nearly doubled since
2012, indicating that users’ mobile activities
are increasingly monitored by several parties.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

07
/0

1/
12

01
/0

1/
13

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

Fr
ac

tio
n

of
 A

PK
s

AD ID
Android ID

GSF ID
IMEI

MAC Addr.

(c) Time series for fractions of APKs leaking
one type of unique ID, bucketed by month. At
around 2014 (vertical line), when Google enforced
the use of the Ad ID, the use of other IDs (Android
ID, GSF ID, IMEI, MAC Address) decreased.

Fig. 4: Privacy trends by domain and tracking identifier across versions and over time.

Domain PII Types leaked with ID #Apps #APKs

google[*] Location, Gender, First Name,
Last Name, Email

124 387

kochava.com Email, Gender 8 36
vungle.com Location, Gender 7 34
mopub.com Gender, Location 6 13
doubleverify.com Location 5 7
aerserv.com Location 4 10
smartadserver.com Location 3 7
aniview.com Location 3 7
mmnetwork.mobi Location 3 9
56txs4.com Gender 3 11

TABLE VIII: Top 10 domains conducting high-risk tracking
(see full table online [1]). There are several domains that
track non-ID PII along with unique IDs. The google[*] entry
represents the same domains as specified in Table VII.

changes over time. Figure 4a shows a CDF of the number of
domains contacted by each APK; we find that the vast majority
of APKs contact more than one domain, and approximately one
quarter of them contact 10 or more domains. To understand how
this behavior changes over time Fig. 4b presents a time series of
the average number of domains contacted by APKs, grouped by
release date. Most notably, we find that this average has nearly
doubled since 2012, with substantial increases in just the past
two years. Thus, not only are large amounts of PII exposed
to other parties, but each user’s activity in an app tends to be
tracked by more parties.

High-risk tracking. Some third-party domains track both
unique identifiers and other more personal information like
location, email address and gender, which allow the domain to
link individuals and personal information (including locations
of interest such as home, work, etc.) to tracking identifiers. In
other words, even if a third party makes a link between unique
ID and a sensitive piece of personal information once, it can
tie this personal information to unique ID without collecting
the former in the future. This is particularly problematic for
user privacy, since it erodes their ability to control how they are
monitored and allows cross-app tracking.

We extracted the set of domains that tie tracking identifiers
with other personal information and list the top 10 (out
of 95) in Table VIII. Not surprisingly, common advertising
domains such as Google-owned domains doubleclick.net,
googleapis.com, googleadservices.com appear at the top
of the list. In addition, we find high-risk tracking from other
domains, such as startappservice.com, doubleverify.com,
and smartadserver.com.

Tracking identifier variations over time. In line with
Google’s requirements for new apps to use the user-resettable
Ad ID for tracking users instead of persistent identifiers, such
as the IMEI and Android ID, with enforcement of the Ad ID
for new and updated apps in the Play Store starting in August
2014 [32], [34], we found it led to more apps using Ad ID
instead of other identifiers (Figure 4c).

11

 1

 10

 100

 1000

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

01
/0

1/
13

01
/0

1/
14

01
/0

1/
15

01
/0

1/
16

01
/0

1/
17

01
/0

1/
18

N
u

m
b

e
r

o
f A

p
p

s

(a) doubleclick.net (logscale)

 0

 1

 2

 3

 4

 5

 6

 7

0
1
/0

1
/1

3

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

(b) supersonicads.com

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0
7
/0

1
/1

3

0
1
/0

1
/1

4

0
7
/0

1
/1

4

0
1
/0

1
/1

5

0
7
/0

1
/1

5

0
1
/0

1
/1

6

0
7
/0

1
/1

6

0
1
/0

1
/1

7

Location

Gender

Ad ID

Android ID

HW Serial

IMEI

Mac Addr.

Contact
Leak

(c) applovin.com

Fig. 5: Third-party domain PII leaks. Each graph represents a time series for a selected domain, with data aggregated into
one-month buckets. We depict the number of apps that contact the domain in red, and the number of apps leaking to the domain in
green. The other lines represent the number of apps leaking the corresponding PII type to the domain. Over time, more apps leak
PII to each of these domains; further, in the case of doubleclick.net the number of PII types being leaked has increased.

Per-domain tracking variations over time. We now inves-
tigate the time-evolution of how domains track various PII types,
using a case study of three examples: the frequently contacted
domain doubleclick.net, the less-frequently contacted ap-
plovin.com, and the rarely contacted supersonicads.com.14

For each of these domains, we determine the number of apps that
send PII to them during each month, and plot this in Figure 5. In
line with our previous results, we see variations not only in the
number of apps that send a given type of PII to a domain, but also
which PII types are sent. Figure 5a shows that doubleclick.net
started transmitting gender in 2014. In the same year, it briefly
collected IMEI, HW Serial, and Android ID, then stopped doing
so. We see similar behavior for supersonicads.com (Figure 5b)
for three of its gathered PII types (IMEI, HW Serial, and Android
ID); additionally, they stopped collecting MAC address in 2014.
Finally, applovin.com collected users’ gender until 2014.

In summary, we find that an important factor for higher
privacy risks over time is the increased number of third-party
domains that are contacted by apps and that receive PII.

F. Summary and Discussion

We analyzed app privacy leaks over time across three
dimensions (PII leaks, HTTPS adoption, and domains contacted)
independently, and found that by most measures app privacy
is more often getting worse as users upgrade apps. In the next
section, we explore combinations of these dimensions and their
implications for privacy.

We showed that a single version of an app is not enough
to assess its privacy over time. This motivates the need for
continuous privacy monitoring across versions of apps as they
appear. To this end, we will make our data and analysis code
publicly available, and investigate how to fully automate our
experimental testbed.

Our analysis shows that HTTPS adoption is slow for mobile
apps. This exposes users’ app interactions, and potentially PII,
to a larger set of network observers. The problem is often
challenging to fix because it might require changes both at
servers (to support HTTPS), and in the app code and/or the
libraries they include (to use HTTPS).

14We focus on three due to space limitations; more examples are online [1].

Finally, we found that as users interact with apps over time a
large number of domains are able to gather and link significant
amounts of users’ PII. This highlights the need to understand
how other parties gather PII longitudinally, and motivates the
need for tools that allow users to limit this data collection.

VI. MULTIDIMENSIONAL ANALYSIS

The previous sections analyzed privacy one attribute at a
time; here, we focus on an APK’s privacy implications when
considering a combination of privacy attributes. For example,
such analysis can indicate that an app leaking PII over insecure
connections is riskier than one leaking the same PII over
encrypted connections.

In the next section, we formalize the three privacy risk
dimensions we consider in our multidimensional analysis. We
then analyze their combination in Section VI-B. Finally, in
Section VI-C we present a tool that can help individuals to
visualize our dataset and understand app privacy risks in a
user-friendly way.

A. Privacy Risk Dimensions

The privacy risk dimensions we consider in our multidimen-
sional analysis are based on the privacy attributes introduced in
Section IV-D, but normalized as real number between 0 and 1,
with 1 indicating the highest privacy risk. Table IX shows the
formal definition of each of them. For each APK j from app
i (ai,j) in our dataset, we define: (i) PII type risk Ri,j , based
on the bit vector representation in Section V-C; (ii) Destination
domain risk Di,j , as the sum of the flows that leak to third-party
domains divided by the maximum number of flows generated
by an APK of app i; (iii) Protocol risk Pi,j , as the percentage
of flows that are sent without encryption.

Ri,j indicates how many PII types have been leaked and
how severe they are. Its value is 1 if the most severe set of
observed PII types have been leaked. Di,j indicates how much
the APK is communicating with third-party domains. Its value
is 1 if all the flows of the APK that generates the most flows
are sent to third parties. Finally, Pi,j indicates the amount of
unencrypted traffic. Its value is 1 when all the traffic is sent
over unencrypted connections.

12

(a) Ri,j vs Di,j (b) Ri,j vs Pi,j (c) Di,j vs Pi,j

Fig. 6: Two-dimensional risk analysis. These plots are heat maps, where each cell represents the number of APKs ai,j in our
dataset exhibiting the corresponding risk values x and y. Each axis represents one of the following privacy risks: PII type risk
(Ri,j), destination domain risk (Di,j), and protocol risk (Pi,j). Colors indicate the number of APKs with a given combined risk
value, with red representing five or more APKs.

Notation Explanation

s(t) ∈ 0, . . . , 5 Privacy severity level for PII type t.
s(t):={ID=1; location=2; user-info=3; user-
name=4; password=5}

Ri,j ∈ [0, 1] PII type risk for ai,j , where τ is the set of types
leaked and ν is the value corresponding to the
most severe set of privacy leaks observed.
Ri,j = 1

ν

∑
t∈τ 2s(t)−1

Di,j ∈ [0, 1] Destination domain risk (third party vs first
party) for ai,j , where hi,j is the number flows
generated by ai,j , and ρi,j is the number of
flows in hi,j to third party domains.

Di,j = min

(
ρi,j

maxj hi,j
, 1

)
Pi,j ∈ [0, 1] Protocol risk (plaintext vs encrypted) for ai,j ,

where πi,j is the number of flows in hi,j that
are in plaintext.
Pi,j =

πi,j

hi,j

risk(x, y) ∈ [0, 1]
risk(x, y, z) ∈ [0, 1]

Combined risk using normalized Euclidean dis-
tance.
risk(x, y) = 1√

2

√
x2 + y2

risk(x, y, z) = 1√
3

√
x2 + y2 + z2

TABLE IX: Definition of the privacy risk dimensions and
risk combination metrics.

B. Combining Dimensions

We now combine the normalized risk metrics, choosing two
or all three dimensions, and analyze how these combined privacy
metrics change over time. We currently treat each dimension with
equal weight, but note that different relative privacy concerns
(e.g., PII leaks matter more than domains) can be captured by
changing the relative weight of each dimension.

We begin by analyzing the two-dimensional combinations
of privacy metrics, depicted using heatmaps in Figure 6. Each
cell at (x,y) indicates the number of apps with risk scores of
x and y, with red indicating five or more apps. Focusing on
the combination of PII types leaked and destinations contacted
(Figure 6a), we see several clusters emerge. The high density in
the bottom left corner indicates that most APKs send relatively
low-risk PII to relatively few domains. The points in the top left
indicate that when high-risk PII is exposed by apps, they tend to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

C
D

F
 o

f
A

P
K

s

Combined Risk

(R,D,P)
(R,D)
(D,P)
(R,P)

(a) Multidimensional combined risk by APK. CDF of combined
risk over all the APKs in our dataset. APKs are fairly evenly distributed
across the risk spectrum.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

01
/0

1/
12

07
/0

1/
12

01
/0

1/
13

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

C
o

m
b

in
e

d
 R

is
k

(R,D,P)
(R,D)
(D,P)
(R,P)

(b) Longitudinal variation of combined risk. The x-axis represents
the APK release date and the y-axis represents the combined risk(...)
metrics. Risk increases over time, and PII types and domains are by
far the dominant factors for this trend.

Fig. 7: Multidimensional privacy risk analysis.

leak it to few domains (with the exception of Pinterest, which
contacts a large number of domains). Last, there are several
apps that send moderately high-risk PII to many domains (right
side of the figure).

When focusing on Figures 6b and 6c, we find that app
behavior is fairly evenly spread across the x-axis range—
indicating that there is no strong correlation between the fraction
of TLS connections (x-axis) and privacy leaks (Fig. 6b) or
number of domains contacted (Fig. 6c). The exception is that
higher-risk PII tends to leak from apps using mostly encrypted

13

connections (top left), aside from a few cases near x = 0.5
(FastMeet, Meet24, Pinterest, Here WeGo - Offline Maps &
GPS, ViewRanger Trails & Maps).

Based on the plots in Figure 6, we now define the risk
aggregation function, which measures the normalized Euclidean
distance between two different types of risk (see Table IX). This
function captures the combination of different risks as a single
number between 0 and 1.15 Note that this function generalizes
to arbitrary numbers of dimensions.

We first use the aggregate risk function to show in Figure 7a
how all the possible combinations of the risk are distributed
across all APKs in our dataset. The figure shows that most APKs
are neither very low nor very high risk, and that the set of all
APKs in our dataset are fairly evenly spread across the range of
risk scores. Of course, because this does not consider time, it
does not indicate whether recently released APKs are relatively
higher or lower risk.

Is privacy getting better or worse? We investigate this
question with Figure 7b, which shows a time series of the
average privacy risk for APKs, grouped by release date. The
figure shows a clear trend towards higher three-dimensional
privacy risk over time (i.e., risk(Ri,j , Di,j , Pi,j)), with most of
the increase attributable to the combination of more PII types
being leaked and to more domains (the risk(Ri,j , Di,j) curve).
Thus, when it comes to leaking PII and contacting third parties,
apps have gotten substantially worse over time.

To further analyze privacy risk changes, we conduct an app-
focused analysis where we plot the combined risk score over time
for each app (over all its APKs) and find the slope of the linear
regression over these scores, as well as the standard deviation of
the scores. Using this data, we categorize privacy risks per app
as getting better, getting worse, staying similar, or exhibiting
high variability over time. Algorithm 1 presents our classification
logic when focusing on the combined score for R and D for
each app. At a high level, we require that the slope and absolute
difference between scores be sufficiently large to indicate that
an app’s privacy became worse or better. If the difference is
not large and there is a relatively large standard deviation, then
we indicate that the app is highly variable; otherwise, the app’s
privacy is labeled as similar.16

Using this approach, we calculated the following fractions
of apps in each category: better (26.3%), worse (51.1%), similar
(9.5%) and variable (13.1%). Thus, while a quarter of apps are
getting better with respect to privacy, twice as many are getting
worse over time and only a small fraction stay the same.

C. Privacy Risk Visualization

We built a web-based interactive tool [1] that allows
individuals to explore the privacy risk data for any app in our
dataset, showing how privacy risks changed across all versions
of each app that the user selects. For this tool, we currently
focus primarily on PII leak types, and allow the user to set
relative leak severity for each PII category (denoted as s(t) in
Table IX); further, we compress our binary representation into a

15Again, different scaling factors on each dimension can represent different
relative risks between dimensions.

16The thresholds (θD, θS) were chosen heuristically, using 1.5 and 0.45
respectively. Users can explore other options via the web interface.

Algorithm 1 Trend Categorization for Privacy Risks.
1: function TREND(app)
2: X← list of versions
3: Y← list of normalized Euclidean distance of (R, D)
4: Std← Standard deviation of Y
5: s← Slope of the linear regression line of (X, Y)
6: Y′ ← s ·X + intercept
7: Df← Y ′max − Y ′min
8: Trend← “similar”
9: if Df ≥ θD then

10: if s > 0 then Trend← “worse”
11: else Trend← “better”
12: else if Std > θS then Trend← “variable”
13: return Trend

scale of 0 to 6 so that it is easier to understand for those who do
not regularly think in terms of bit vectors. As part of ongoing
work, we are investigating other intuitive ways to present our
findings using a single score.

VII. CONCLUSION

This paper provides the first longitudinal study of the privacy
impact of using popular Android apps and their updated versions
over time. We found that the PII shared with other parties changes
over time, with the following trends: (1) overall privacy tends
to worsen across versions; (2) the types of gathered PII change
across versions, limiting the generalizability of single-version
studies; (3) HTTPS adoption is relatively slow for mobile apps;
(4) third parties not only track users pervasively, but also gather
sufficient information to know what apps a user interacts with,
when they do so, and where they are located when they do.

A naïve interpretation of our observed privacy trends is
that users should stop updating apps; however, new versions
of apps also contain bug fixes and improvements (e.g., critical
security updates). Thus, what is needed is information that helps
users make informed decisions when deciding whether to update
the app given a set of changes in a new version. We envision
that our online tool [1] can in part fill this need. Further, we
recommend users to install tools like ReCon [50], Lumen [49],
or AntMonitor [40] to block unwanted privacy leaks that come
from newer versions of apps.

Our dataset and analysis code are available at: https://
recon.meddle.mobi/appversions/.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback.
This work was partially supported by the Data Transparency Lab,
the Academy of Finland PADS project (grant number 303815),
the European Union under the H2020 TYPES (653449) project,
and by DHS S&T contract FA8750-17-2-0145. This material is
also based upon work supported by the NSF under Award No.
CNS-1408632 and No. CNS-1564329, and a Security, Privacy
and Anti-Abuse award from Google. Cloud computing resources
were provided by an AWS Cloud Credits for Research award
and by a Microsoft Azure for Research award. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies or Google.

14

https://recon.meddle.mobi/appversions/
https://recon.meddle.mobi/appversions/

REFERENCES

[1] https://recon.meddle.mobi/appversions/.
[2] “AndroidAPKsFree,” http://www.androidapksfree.com/.
[3] “APK4Fun,” https://www.apk4fun.com/.
[4] “APKPure,” https://apkpure.com/.
[5] “AppBrain,” http://www.appbrain.com/.
[6] “geopy,” https://github.com/geopy/geopy.
[7] “JustTrustMe,” https://github.com/Fuzion24/JustTrustMe.
[8] “mitmproxy,” https://mitmproxy.org/.
[9] Apple, “Supporting App Transport Security,” https://developer.apple.com/

news/?id=12212016b, December 2016.
[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps,”
in Proc. of PLDI, 2014.

[11] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
Android Permission Specification,” in Proc. of CCS, 2012.

[12] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library Detection
in Android and its Security Applications,” in Proc. of CCS, 2016.

[13] J. Ball, B. Schneier, and G. Greenwald, “NSA and GCHQ target Tor
network that protects anonymity of web users,” http://www.theguardian.
com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption, October
2013.

[14] M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson, “Tracing
Information Flows Between Ad Exchanges Using Retargeted Ads,” in
Proc. of USENIX Security, 2016.

[15] T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal Analysis of
Android Ad Library Permissions,” in Proc. of MoST, 2013.

[16] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda, “Curi-
ousDroid: Automated User Interface Interaction for Android Application
Analysis Sandboxes,” in Proc. of FC, 2016.

[17] T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli, “Information Leakage
through Mobile Analytics Services,” in Proc. of HotMobile, 2014.

[18] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation
for Android: Are We There Yet?” in Proc. of ASE, 2015.

[19] S. Comino, F. M. Manenti, and F. Mariuzzo, “Updates Management in
Mobile Applications. iTunes vs Google Play,” in SSRN, 2016.

[20] K. Conger, “Apple will require HTTPS connections for iOS apps by the
end of 2016,” https://techcrunch.com/2016/06/14/apple-will-require-https-
connections-for-ios-apps-by-the-end-of-2016, June 2016.

[21] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-Resilient Privacy Leak Detection
for Mobile Apps Through Differential Analysis,” in Proc. of NDSS, 2017.

[22] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Privacy
Leaks in iOS Applications,” in Proc. of NDSS, 2011.

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones,” in Proc. of USENIX OSDI, 2010.

[24] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security,” in Proc. of CCS, 2012.

[25] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS Adoption on the Web,” in Proc. of USENIX Security,
2017.

[26] FTC, “Mobile Privacy Disclosures: Building Trust Through Transparency,”
FTC Staff Report, Feb 2013.

[27] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov,
“The Most Dangerous Code in the World: Validating SSL Certificates in
Non-browser Software,” in Proc. of CCS, 2012.

[28] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing- and
Touch-sensitive Record and Replay for Android,” in Proc. of ICSE, 2013.

[29] Google, “Android Developers Dashboards,” https://developer.android.com/
about/dashboards/index.html.

[30] ——, “App Manifest,” https://developer.android.com/guide/topics/
manifest/manifest-element.html.

[31] ——, “Google Maps Geocoding API,” https://developers.google.com/
maps/documentation/geocoding.

[32] ——, “Google Play Console Help: Advertising ID,” https://support.google.
com/googleplay/android-developer/answer/6048248.

[33] ——, “UI/Application Exerciser Monkey,” https://developer.android.com/
tools/help/monkey.html.

[34] ——, “Google Play Services 4.0,” https://android-developers.googleblog.
com/2013/10/google-play-services-40.html, October 2013.

[35] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D. Lazer,
A. Mislove, and C. Wilson, “Measuring Personalization of Web Search,”
in Proc. of WWW, 2013.

[36] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson, “Measuring
Price Discrimination and Steering on E-commerce Web Sites,” in Proc.
of IMC, 2014.

[37] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for Large-scale Dynamic Analysis of Mobile
Apps,” in Proc. of MobiSys, 2014.

[38] C. Johnson, III, “US Office of Management and Budget Memorandum
M-07-16,” http://www.whitehouse.gov/sites/default/files/omb/memoranda/
fy2007/m07-16.pdf, May 2007.

[39] A. Klyubin, “Protecting against unintentional regressions to cleartext traffic
in your Android apps,” https://security.googleblog.com/2016/04/protecting-
against-unintentional.html, April 2016.

[40] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou, “AntMonitor: A System for Monitoring from Mobile
Devices,” in Proc. of Workshop on Crowdsourcing and Crowdsharing of
Big (Internet) Data, 2015.

[41] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill my
ads! Balancing Privacy in an Ad-Supported Mobile Application Market,”
in Proc. of HotMobile, 2012.

[42] C. Leung, J. Ren, D. Choffnes, and C. Wilson, “Should You Use the App
for That? Comparing the Privacy Implications of App- and Web-based
Online Services,” in Proc. of IMC, 2016.

[43] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later: A
View on Current Android Malware Behaviors,” in Proc. of BADGERS,
2014.

[44] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proc. of ESEC/FSE, 2013.

[45] B. Naylor, “Congress Overturns Internet Privacy Regulation,”
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-
privacy-regulation, March 2017.

[46] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark Hazard: Learning-
based, Large-scale Discovery of Hidden Sensitive Operations in Android
Apps,” in Proc. of NDSS, 2017.

[47] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware,” in Proc. of EuroSec, 2014.

[48] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill, “Studying TLS Usage in Android Apps,” in Proc.
of CoNEXT, 2017.

[49] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill,
M. Allman, and V. Paxson, “Haystack: In Situ Mobile Traffic Analysis
in User Space,” arXiv preprint arXiv:1510.01419, 2015.

[50] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R. Choffnes, “ReCon:
Revealing and Controlling Privacy Leaks in Mobile Network Traffic,” in
Proc. of MobiSys, 2016.

[51] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A Measurement
Study of Tracking in Paid Mobile Applications,” in Proc. of WiSec, 2015.

[52] Y. Song and U. Hengartner, “PrivacyGuard: A VPN-based Platform to
Detect Information Leakage on Android Devices,” in Proc. of SPSM,
2015.

[53] V. F. Taylor and I. Martinovic, “Short Paper: A Longitudinal Study of
Financial Apps in the Google Play Store,” in Proc. of FC, 2017.

[54] ——, “To Update or Not to Update: Insights From a Two-Year Study of
Android App Evolution,” in Proc. of ASIACCS, 2017.

[55] Y. Tian, B. Liu, W. Dai, B. Ur, P. Tague, and L. F. Cranor, “Supporting
Privacy-Conscious App Update Decisions with User Reviews,” in Proc.
of SPSM, 2015.

[56] N. Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand,
M. Allman, C. Kreibich, and P. Gill, “Tracking the Trackers: Towards
Understanding the Mobile Advertising and Tracking Ecosystem,” in Proc.
of the Workshop on Data and Algorithmic Transparency (DAT), 2016.

[57] T. Vidas and N. Christin, “Evading Android Runtime Analysis via Sandbox
Detection,” in Proc. of ASIACCS, 2014.

[58] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. Wang, “AppIntent:
Analyzing Sensitive Data Transmission in Android for Privacy Leakage
Detection,” in Proc. of CCS, 2013.

15

https://recon.meddle.mobi/appversions/
http://www.androidapksfree.com/
https://www.apk4fun.com/
https://apkpure.com/
http://www.appbrain.com/
https://github.com/geopy/geopy
https://github.com/Fuzion24/JustTrustMe
https://mitmproxy.org/
https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/news/?id=12212016b
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developers.google.com/maps/documentation/geocoding
https://developers.google.com/maps/documentation/geocoding
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation

	Introduction
	Related Work
	Goals and PII Definitions
	PII Considered in This Work
	Threat Model and PII Leaks

	Methodology
	App Selection
	APK Collection
	Interaction and Traffic Collection
	Privacy Attributes
	PII Leaks
	Transport Security
	Communication with First and Third Parties

	Assumptions and Limitations
	Validation

	Longitudinal Analysis
	A Notable Example: Pinterest
	Summary of Results
	Variations in PII Leaks
	HTTPS Adoption Trends
	Third-Party Characterization
	Summary and Discussion

	Multidimensional Analysis
	Privacy Risk Dimensions
	Combining Dimensions
	Privacy Risk Visualization

	Conclusion
	References

