
Should You Use the App for That?
Comparing the Privacy Implications of App- and

Web-based Online Services

Christophe Leung, Jingjing Ren, David Choffnes, Christo Wilson
Northeastern University

{tophe, renjj, choffnes, cbw}@ccs.neu.edu

ABSTRACT
Many popular, free online services provide cross-platform
interfaces via Web browsers as well as apps on iOS and An-
droid. To monetize these services, many additionally include
tracking and advertising libraries that gather information
about users with significant privacy implications. Given that
the Web-based and mobile-app-based ecosystems evolve in-
dependently, an important open question is how these plat-
forms compare with respect to user privacy.

In this paper, we conduct the first head-to-head study of
50 popular, free online services to understand which is better
for privacy—Web or app? We conduct manual tests, extract
personally identifiable information (PII) shared over plain-
text and encrypted connections, and analyze the data to un-
derstand differences in user-data collection across platforms
for the same service. While we find that all platforms ex-
pose users’ data, there are still opportunities to significantly
limit how much information is shared with other parties by
selectively using the app or Web version of a service.

1. INTRODUCTION
Web browsers and mobile apps are the dominant media

through which people interact with online services such as
social media, news, weather, and dating. Many of these ser-
vices are provided for free to users, with providers support-
ing their costs through revenue from advertising and data
analytics. This necessarily raises important privacy con-
cerns regarding what information is collected about users
and how it is used.

Previous work investigates the question of what infor-
mation is collected, either in the Web browsing environ-
ment [8, 15, 22, 24, 33–35] or in the mobile environment
[29, 38, 42]. A close reading of this literature reveals dif-
ferences between these media, with the Web having more
sophisticated tracking infrastructure overall, versus apps
which have more direct access to sensitive information
through APIs. However, to date no work has directly com-
pared these media for the same service to understand a fun-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’16, November 14–16, Santa Monica, CA, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4526-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2987443.2987456

damental question: is there a medium that is better for
privacy—app or Web?

This paper provides a first look at this issue, which re-
quires addressing two key challenges. First, we must gather
a representative sample of information that large numbers
of online services expose of the Internet, both via apps and
Web sites. Second, we must reliably identify the personally
identifiable information (PII) in network traffic generated by
these services. By providing greater transparency into how
apps and Web sites share PII, we seek to provide the com-
munity with better insight into the data collected by specific
apps and Web sites, as well as help users make informed de-
cisions about how they interact with online services.

To address the first challenge, we use a dataset consisting
of network traces gathered from manual interactions with
iOS, Android, and Web versions of the same 50 free on-
line services. This includes major services like The Weather
Channel, Yelp, and BBC News. We address the second chal-
lenge by conducting controlled experiments where ground-
truth information about users’ PII, coupled with state-
of-the-art inference techniques to identify PII in network
flows [38]. Unlike our prior work that exclusively focuses on
PII leaked by apps, this paper aims to provide a comparison
of Web- and app-based data collection by the same service.

Using this approach, we determine the PII exposed by
services over plaintext and/or to advertising and analytics
(A&A) third-party domains, and analyze their implications
on privacy. Our key findings are as follows.

• Should you use the app? It depends. Due to
the potentially large set of PII that apps can access
with user permission, we expected that they would
generally leak more PII than Web sites. However, we
find that in 40% of cases, Web sites leak more types of
information than apps. To help guide users toward us-
ing an app or Web site for a specific service, we provide
an online interactive interface that makes custom sug-
gestions based on user-specified privacy preferences at:

https://recon.meddle.mobi/appvsweb/

• What information leaks more from different
media? We find that locations and names leak more
often from Web sites than from apps, whereas only
apps leak unique identifiers and other device-specific
information. Surprisingly, we find passwords leaked
(albeit over HTTPS) to third parties that have no rea-
son to receive them.

• Web sites directly contact more trackers and
advertisers than apps. We find that Web sites of-
ten include content from multiple advertisers and third

parties, and cause browsers to redirect through several
more via real-time bidding. In contrast, most apps
include a single advertisement library, which contacts
fewer domains.

• How much tracking is in common between app
and Web for the same service? We find that both
apps and Web sites can leak locations, names, gender,
phone number, and e-mail addresses. Unlike for apps,
we found no evidence in our tests that Web sites are
able to access and share device-specific unique identi-
fiers, such as an IMEI and a MAC address. Whether
this is true for other services remains an open question.

In addition to providing an online interface to make
customized privacy recommendations, we make our dataset
and code available at:

https://recon.meddle.mobi/appvsweb/

2. BACKGROUND AND RELATED WORK
Users are increasingly concerned with the amount of track-

ing and data collection conducted by online services [32,41].
In response, regulators such as the FTC, FCC, and the EU
Commission enacted rules that protect consumer privacy;
non-profits such as the Data Transparency Lab and Mozilla
support efforts to increase transparency of online tracking;
and tools like AdBlock and Disconnect limit tracking.

These efforts are supported by a large body of research
that identifies when Personally Identifiable Information
(PII) is exposed by online services. Previous work focuses
either on Web sites or apps to determine privacy risks, but
not both. In contrast, to the best of our knowledge, we are
the first to directly compare information gathered through
Web sites and apps for the same online service, allowing us
to provide a relative ranking of which one is less invasive ac-
cording to various metrics. Although this study represents
a snapshot of online service behavior at one point in time,
our approach is general and can be repeated to observe how
the privacy landscape evolves.

2.1 Web Privacy
Well before there were apps and modern smartphones, re-

searchers observed that advertisers and analytics companies
were tracking users via Web site content [25]. These ini-
tial observations motivated a wide range of research on Web
tracking, from understanding the tracking ecosystem over
time and the economics behind it [11,18,26,27], to identify-
ing specific techniques used to track users [5,8,15,22,24,33–
35,39], to examining how tracking varies geographically [16].
While several proposals attempt to help users regain control
over their privacy when browsing the Web [28,36], tracking
remains pervasive.

Unlike prior work, our paper focuses on characterizing
third-party tracking and the PII they collect for services that
are also available as apps. Further, to the best of our knowl-
edge no other study focuses on Web tracking and its privacy
implications from mobile browsers. (For our purposes, only
the operating system’s native browser application is consid-
ered. Embedded browser components such as WebViews are
not included.) This is an increasingly important distinction,
as mobile browsers have access to sensors (e.g., GPS) that
are not available on desktops.

2.2 Mobile App Privacy
Due to the rich sensors, APIs, and availability of PII

on mobile devices, a large body of work focuses on under-
standing privacy from the perspective of tracking and data-
collection by mobile apps. Early testbed studies showed that
popular apps exposed location, usernames, passwords, and
phone numbers [40]. Follow-up work observed similar behav-
ior at scale “in-the-wild” [29, 38, 42]. A number of projects
focus on detecting and mitigating privacy violations from
mobile apps [6, 7, 12,14,17,19,21,23,30,38,43–46].

In this paper, we focus on comparing the PII exposed by
mobile apps and Web sites for the same service. To accom-
plish this, we use tools from prior work [38] to identify PII
leaks in mobile-device traffic.

2.3 Mobile Experimentation Methods
For scalability reasons, most previous work uses auto-

mated tests to analyze mobile apps [9, 20, 31]. However, a
key limitation of this approach is that they cannot automat-
ically explore apps that require signing in [13]. Further, our
recent study shows that automated tools only reveal a small
fraction of the PII exposed when manually interacting with
apps [38]. In this work, we use manual tests of Web sites and
apps, both to ensure that the PII exposure is representative
of what users would see, and to ensure that we explore the
same features of the service across both Web and app.

3. DATA COLLECTION
In this section, we describe the online services we investi-

gated, our experimental methodology for eliciting and iden-
tifying PII sent over the network, and high-level statistics
about our gathered dataset.

3.1 Selecting Online Services
Our first task is selecting online services to measure, each

of which must meet the following criteria: 1) it must be pop-
ular (according to app store rankings) and/or “featured” in
an app store, 2) it must provide a free app in the Google
Play Store and the Apple App Store, 3) it must provide
equivalent functionality via a mobile Web browser, and 4)
it must not implement certificate pinning. For example, In-
stagram fails criteria (3) because the mobile Web site does
not offer the same functionality as its app. Similarly, Pan-
dora fails because it will not stream music via Chrome on
Android. Facebook’s app fails criteria (4). In general, we
omitted any service for which we could not make an apples-
to-apples comparison.

To locate candidate apps, we crawled the top 100 free An-
droid apps listed in the US version of the Google Play Store
on March 23, 2016. To avoid personalized recommendations
that would impact the set of presented apps, we browsed
the Google Play Store with a clean browsing history and no
cookies stored. Only 75 apps met the requirements for our
study. We added to this set “featured and recommended”
apps that were promoted on the home page of the Google
Play Store. In total, we selected a subset of 50 services to
test, and chose them based on broadly covering popular apps
across different app categories, then filling in with apps that
are likely to collect PII (shopping, travel, entertainment).
While we cannot make any claims about generality, we be-
lieve this set provides an interesting cross-section of online
services with respect to privacy.

3.2 Experiment Methodology
Understanding privacy implications of mobile apps and

Web sites requires interacting with these services in ways
that normal users would. Using automated testing frame-
works for this purpose is tempting, due to their simplicity,
low effort, and ability to test large numbers of apps in a short
period of time. However, previous work show that such tests
miss important UI features (e.g., logging in, entering valid
user data into text fields) [38]; further, there is a lack of good
automated testing tools for iOS and for mobile browsers.

Instead, we conducted manual tests of 50 online services.
Manual tests avoid the pitfalls of automated ones because
testers can interpret UIs, enter reasonable data into arbi-
trary fields, and ensure similar (or identical) service func-
tionality is exercised both over apps and Web sites. While
we cannot claim generality or representativeness based on
the 50 online services we tested, these comprise some of the
most popular services used in the United States. We used
the following procedures to test each online service.

Test Environment. Each test consisted of interacting
with a given service via an app or Web site for four min-
utes. We collected network traffic generated during each
experiment using Meddle [37], and used Mitmproxy [3] to
capture both HTTP and the plaintext content of HTTPS
flows. For each service requiring a login, we created a new
account using a previously unused email address.

We used two phones (a Nexus 4 and a Nexus 5) running
stock Android 4.4, and an iPhone 5 running iOS 9.3.1.
We specifically chose to test on Android 4.4 because it was
the most common Android version in-the-wild as of April
2016 [4]. All three phones were factory reset before our ex-
periments, and included no apps beyond the stock services
and the 50 apps evaluated in this work.

Interacting with Services. Each experiment used
the following steps. We installed the service’s app, then
connected the device to Meddle using a VPN tunnel. Next,
we opened the app and used it for its intended purpose for
approximately four minutes. We approved any system per-
mission requests when prompted. After the time expired,
we closed the VPN connection and uninstalled the app.

We repeated this procedure using the operating system’s
default browser: Chrome for Android, and Safari on iOS.
To avoid contamination due to browsing history and stored
cookies, we used“private mode”browsing. When interacting
with the Web version of the service, we attempted to conduct
identical operations as in the app (to the extent possible).
To ensure fairness, when asked to log-in, we used the same
pre-created account credentials used to test the app.

Note that we cannot claim to exhaustively cover all poten-
tial PII leaks using only four minutes of manual app testing.
However, based on a number of tests using longer durations
(10 minutes) for a subset of apps (the five apps that leaked
the most and least during four-minute tests), we found that
four minutes strikes a good balance between providing ad-
equate time to use most features of a service, and quickly
covering a reasonably large number of services in a fixed
amount of time. Specifically, we found that the number
of third parties contacted and number of times PII leaked
were roughly proportional to the duration of the experiment
(because longer experiment durations lead to more network
flows), but we generally did not see additional types of PII
leaked during the longer experiment duration (with the ex-

ception of one additional PII type, e-mail address, leaked
from one app after four minutes).

Regardless, our results represent a conservative lower
bound on the PII leaked from apps and Web sites. Based
on the substantial amount of leaks discovered, we believe
this to be an important first step toward understanding dif-
ferences between PII leaks over apps and Web sites.

Filtering. One issue with collecting network traces
from mobile devices is that flows may be generated by the
foreground process (i.e., the app or Web site we are investi-
gating) or background processes. We use three methods to
minimize background traffic from our traces. First, we use a
clean, factory-reset lab phone to conduct the tests. Second,
we turn off background synchronization and manually close
all background apps before each experiment. Finally, we fil-
ter traffic to domains that are known to be associated with
OS services (e.g., Google Play Services and Apple iCloud).

Identifying PII. The next step in our methodology is
identifying PII in our network traces. This task is greatly
simplified because our experiments are controlled, i.e., we
know all the PII that is available on our test devices. This in-
cludes usernames and passwords, MAC address, IMEI, GPS
coordinates, ZIP code, etc.

However, knowing the PII in advance is not a catch-all for
detecting it in network traffic. GPS locations are sent with
arbitrary precision, unique identifiers are formatted incon-
sistently, a user’s inferred gender is not stored in the phone,
etc. Thus, we use the following approach to identify PII.
First, we use the automated ReCon tool [38], which uses ma-
chine learning to detect likely PII in network traffic without
needing to know the precise PII values. Second, to minimize
the risk of ReCon missing PII, we augment its results with
PII found via direct string matching on known PII. Finally,
we manually verify ReCon predictions and excluded false
positives based on our ground-truth information.

Domain Categorization. The final step in our
methodology is labeling all the flows based on their desti-
nation. We manually identified first-party flows by looking
for domain names associated with our chosen services (e.g.,
weather.com and imwx.com for the Weather Channel). For
the remaining third-party flows, we further categorize them
as advertisers or analytics by comparing the destination do-
main to EasyList [2] and manually verifying the results.

Defining a PII “Leak.” We focus on PII that reduces
users’ privacy either because (1) it is transmitted over the
Internet unencrypted, thus exposing the data to eavesdrop-
pers, or (2) it is sent to third parties (encrypted or plaintext)
and is not required for logging into the service, thus exposing
users to profiling. We label network flows containing PII un-
der these two conditions a PII leak. If a username, password,
or e-mail address (often used as a username) is transmitted
to a first-party site1 over HTTPS, then we do not consider
them to be leaks. All other cases of transmitted PII are
leaks. For example, a birthday sent to a first party using
encryption is a leak; the same is true if an e-mail address is
sent to a third party (encrypted or not).

While many first party “leaks” may be intended and ac-
ceptable to the user, we err on the side of identifying all PII
sharing beyond login credentials to provide a broad view of
data-collection when using online services. Such informa-

1Or to a single sign-on service.

tion can help users evaluate (and re-evaluate) the implica-
tions of sharing their PII over time and across services and
platforms.

Experiment Limitations. Our experiments are lim-
ited to detecting PII leaks that occur directly to first and
third parties, and that are detectable using common encod-
ings (i.e., are not obfuscated). Identifying cases of users’
PII shared by other parties indirectly is an important topic
of research beyond the scope of this short paper. We were
not able to measure services that use TLS certificate pin-
ning, such as Facebook and Twitter, because they prevent
us from decrypting network traffic with Meddle.

We found no evidence of PII leaks from browsers them-
selves, or from apps to browsers (or vice versa). However,
this was by design and is a limitation of our work. In this
paper, we are primarily concerned with the PII that apps
and Web sites directly gather from users. To achieve this, we
took several steps to eliminate leakages across media, includ-
ing: using factory-reset OSes and their respective default
browsers for each session; using private mode to browse,
and different credentials for each test. Properly identify-
ing browser (or cross-site) leaks is an open and challenging
question, one that is outside the scope of this short paper.

3.3 Dataset
We manually tested online services over app and Web ver-

sions in the Boston area between March 23 and May 11,
2016. Table 1 summarizes the services that leaked PII by
OS, medium (app vs. Web), and by category. In addition to
the number of services tested under each OS and service cat-
egory (first column), we show the average popularity rank
of the apps we tested (second column) using data from App
Annie [1]. We observe that most apps are within the top-40
for their category. We will discuss the information exposed
by these services (third and fourth columns) in Section 4.2.

4. RESULTS
This section summarizes our key findings with respect to

the privacy implications of using apps or Web sites for online
services. We first focus on requests to third-parties, then an-
alyze the PII exposed by these services, and finally conclude
with how effectively online services can track users across
app and Web platforms.

4.1 Third-Parties
In this section, we focus on the third-parties that are con-

tacted by online services. Specifically, we focus on advertis-
ing and analytics (A&A) domains, because it is well-known
that they track users in order to serve targeted ads.

Figure 1a depicts a CDF of the difference in the number
of unique A&A domains contacted by app- and Web-based
versions of the each online service. We present one curve for
each OS. Negative values indicate that the Web version of
the service contacts more domains than the app version.

Figure 1a shows that the vast majority (86% on Android,
84% on iOS) of online services contact more third-parties
via their Web site than their app. Some of the greatest
disparities come from services like Accuweather, BBC News,
and Starbucks, which contact ≤ 4 third-parties in-app, but
contact tens of A&A domains on their Web sites.

A&A domains are also responsible for the different
amounts of network traffic required to use the service. Fig-

ure 1b shows a CDF of the difference in the number of net-
work flows between app- and Web-based versions of each
online service. The key takeaway is that the inclusion of
additional A&A sites in Web versions of a service are of-
ten responsible (for 74% of Android services and 80% of
iOS) for hundreds and sometimes thousands of extra TCP
connections. Services that trigger over thousands of TCP
connections include All Recipes Dinner Spinner, BBC News
and CNN News, over the course of four-minute interactions
in our experiments. These connections can further be waste-
ful in terms of bandwidth, sometimes leading to several MB
of data consumption during only 4 minutes of interaction
time (see Figure 1c).

To summarize, based on the pervasiveness of direct track-
ing from A&A sites, we find it is nearly always better to use
an app than a Web version of a service. In the next section,
we include PII leak information to better understand how
much information is exposed by each service.

4.2 PII Leaks
This section focuses on what PII is leaked, how this dif-

fers between app- and Web-based versions of services, which
third-parties receive leaked PII, and the amount of overlap
between PII leaked from apps and Web sites.

Aggregate View. We begin with PII leaks aggregated
by platform and category (second and third column groups
in Table 1). The second column group shows the fraction of
services that leak PII, and the average number of domains
receiving PII leaks per service.

A few clear trends emerge. First, we observe that 14%
more services leak PII via apps than via Web sites (first two
rows), though the overall fraction of leaky services is high
in both cases. Next, we see that while similar fractions of
Android and iOS apps leak PII, 28% fewer Web sites leak
PII when loaded in Chrome on Android vs. Safari on iOS.
However, we also see that Web sites leak comparable types
of PII regardless of whether they are loaded in Chrome or
Safari (with phone number being the sole exception).

When grouping services by category, we find that apps
leak an equal or greater amount of PII compared to the
corresponding Web sites. The categories leaking PII to the
most domains are Education and Weather, while Entertain-
ment (which is dominated by streaming video apps) is least
likely to leak.

Focusing now on the leaked identifiers in the last column
group in Table 1, we find that every category leaks unique
identifiers (column UID), and almost all Web and apps leak
location (column L, either GPS coordinate or ZIP code).
Some services leak gender and birthdays, even though that
is not something entered by the user during tests (they were
entered at account creation before testing).

Importantly, we found four cases of password leaks to third
parties over HTTPS connections. Specifically, we found that
Grubhub sent passwords to taplytics.com, JetBlue to us-

ablenet.com, and The Food Network and NCAA Sports
sent passwords to Gigya, a third-party identity management
service.

We reported the first two cases to Grubhub and JetBlue,
respectively, according to responsible disclosure principles.2

2We did not report the Gigya cases because they were clearly inten-
tional behavior and not a security vulnerability per se, even though
users were likely unaware that a third-party credential-management
service was used.

of Avg. PII Leaks: Leaked Identifiers:
Services Rank Services Domains B D E G L N P# U PW UID

App 50 32.0 90.0% 4.9 ± 4.7 X X X X X X X X X X
All

Web 50 - 76.0% 3.5 ± 3.2 X X X X X X X X

App 50 34.0 82.0% 2.5 ± 3.4 X X X X X X
Android

Web 50 - 48.0% 2.6 ± 2.8 X X X X X X X
App 50 30.1 86.0% 4.1 ± 4.4 X X X X X X X X X XO

S

iOS
Web 50 - 76.0% 3.1 ± 2.8 X X X X X X X X

App 2 3.0 100.0% 3.0 ± 0.0 X X
Business

Web 2 - 50.0% 3.0 ± 0.0 X
App 4 14.2 75.0% 12.3 ± 14.0 X X X X

Education
Web 4 - 50.0% 2.0 ± 1.0 X X X
App 6 16.3 66.7% 6.0 ± 2.5 X X X

Entertainment
Web 6 - 50.0% 1.3 ± 0.5 X X X X X
App 6 57.9 100.0% 4.2 ± 2.3 X X X X X X X

Lifestyle
Web 6 - 100.0% 4.5 ± 3.4 X X X X X X
App 4 81.6 75.0% 3.3 ± 2.1 X X X X

Music
Web 4 - 25.0% 6.0 ± 0.0 X
App 2 4.0 100.0% 4.5 ± 3.5 X X X X

News
Web 2 - 100.0% 3.0 ± 0.0 X X
App 9 13.7 100.0% 3.3 ± 0.9 X X X X X X X

Shopping
Web 9 - 77.8% 4.3 ± 4.2 X X X X
App 2 24.2 100.0% 6.0 ± 0.0 X X X X X

Social
Web 2 - 100.0% 1.5 ± 0.5 X X X
App 12 47.2 91.7% 3.7 ± 1.3 X X X X X X X X X

Travel
Web 12 - 91.7% 3.1 ± 3.0 X X X X X X X
App 3 3.3 100.0% 8.3 ± 2.1 X X X

C
a
t
e
g
o
r
y

Weather
Web 3 - 100.0% 5.7 ± 3.3 X

Table 1: Summary of tested services, broken down by OS and category. The vast majority of services leak PII, with apps leaking more
frequently than the corresponding Web site. The leaked identifiers are Birthday, Device Info, Email address, Gender, Location, Name,
Phone #, Username, PassWord, and Unique IDentifiers.

Grubhub confirmed that the passwords were inadvertently
sent via an encrypted connection to tapltyics.com, Grub-
hub’s analytics provider. Grubhub confirmed it was a bug
and released a new version of the app addressing this bug
within a week after confirmation, and confirmed deletion of
all data by taplytics.com that was sent in error.

JetBlue informed us that the password was intentionally
sent to usablenet.com for authentication services, and that
in addition to using encryption to send the password over
the network, it is also encrypted before storing.3 In The
Food Network and NCAA Sports cases, an important issue
is that users are not made aware that their credentials are
managed by another party, since the login pages are hosted
by the first party site and do not mention the third party.

Following the rows in Table 1, we find that Shopping
and Travel services leak the widest variety of PII, includ-
ing phone numbers, as well as usernames and passwords to
third-parties (via HTTPS). On the other hand, Business and
Weather apps leak the fewest types of PII.

In summary, we find that PII leaks are pervasive and differ
according to app category. In general, apps leak more PII
than Web sites, which is expected since apps can request
direct access to more types of PII stored on the device than
a Web site. Interestingly, Education and Weather services
are both the most promiscuous at leaking PII (contacting
the largest number of domains) but leak fewer types of PII
than other categories.

Differences in PII Leaks. We now focus on how
app- and Web-based versions of the same service differ in
terms of PII leaks. We analyze the number of domains re-
ceiving leaks, the number of distinct identifiers leaked, and
the overlap in leaked identifiers.

Figure 1d shows a CDF of the difference in number of
domains receiving PII leaks between app- and Web-based

3A “best practice” referred to as “encrypted at rest and in motion.”

versions of the each online service, with negative numbers
indicating the Web site leaked PII to more domains. We ob-
serve very different trends compared to A&A domains shown
in Figure 1a. The curves show that there is a slight bias to-
ward apps leaking PII to more domains than Web sites.

To understand how many distinct types of PII are leaked,
we plot a PDF of the difference in leaked identifiers for the
app- and Web-based version of the same service (Figure 1e).
The figure shows that the most common case is that both
the app version of the service leaks one more type of distinct
PII than the Web site, and there is a strong bias toward apps
leaking more distinct types of PII than Web sites (positive
x-values).

A key question is whether app- and Web-based versions of
services are leaking the same set of PII or not. We analyze
this using the Jaccard index, which is a metric of set similar-
ity where 0 means nothing in common and 1 means the sets
are identical. Figure 1f plots a CDF of Jaccard index values
for the PII leaked by each service’s Web and app versions.
We find that the types of PII leaked by Web- and app-based
versions of the same service share nothing in common more
than half of the time. Overall, 80-90% of services share only
50% of the PII types leaked across app and Web.

The previous result is perhaps expected because app and
Web A&A systems have different PII available to them, and
thus use different mechanisms for tracking. For example,
app-based tracking can identify sessions belonging to the
same user via a device’s unique identifiers, while Web sites
tend to use cookie IDs and cookie matching [10]. However,
in many cases the differences in the types of PII leaks are
substantial; for example Priceline leaked birthdays and gen-
der from their Web site, but do not do so from either iOS
or Android apps (each of which in turn leaks different PII).

In summary, we find that apps are more likely to leak more
PII types than their Web counterparts, and most online ser-

 0

 20

 40

 60

 80

 100

-60 -50 -40 -30 -20 -10 0 10 20

C
D

F
 o

f
S

e
rv

ic
e
s

(App - Web) A&A Domains Contacted

Android
iOS

(a) A&A domains

 0

 20

 40

 60

 80

 100

-1000 -500 0 500 1000 1500

C
D

F
 o

f
S

e
rv

ic
e
s

(App - Web) Flows to A&A Domains

Android
iOS

(b) A&A flows

 0

 20

 40

 60

 80

 100

-5 -4 -3 -2 -1 0 1 2 3

C
D

F
 o

f
S

e
rv

ic
e
s

(App - Web) MB of Traffic to A&A

Android
iOS

(c) A&A bytes

 0

 20

 40

 60

 80

 100

-15 -10 -5 0 5 10 15 20 25 30

C
D

F
 o

f
S

e
rv

ic
e
s

(App - Web) Domains Sent PII

Android
iOS

(d) Leak domains

 0

 10

 20

 30

 40

 50

-4 -3 -2 -1 0 1 2 3 4 5
%

 o
f
S

e
rv

ic
e
s

(App - Web) Leaked Identifiers

Android
iOS

(e) Leaked identifiers

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
S

e
rv

ic
e
s

Jaccard of Leaked Identifiers

Android

iOS

(f) Jaccard of leaked identifiers

Figure 1: For subfigures (a)-(d), we find the differences between app and Web versions of the same service, in terms of A&A domains
visited, number of flows to them, and the number of bytes they consume, and the number of domains they leak PII to. Subfigures (e)-(f)
compare the set of identifiers leaked by app and Web versions of each service.

vices leak substantially different PII over the two media. We
believe this occurs due to the fact that apps and Web sites
often have different mechanisms for data collection, differ-
ent analytics companies, and different development teams.
Interestingly, the services we tested provide the same func-
tionality over app and Web, and should in theory be able
to provide (at a high level) uniform data collection policies
across platforms. The fact that they do not provides an
opportunity for users to make informed privacy decisions
when choosing whether to install an app or use a Web site
(independent of the reasons behind these differences).

Recipients of PII Leaks. To understand how per-
vasively user PII is exposed to other parties, we analyze
our dataset according to which third party is contacted (via
Web or app), and identify whether app- or Web-based track-
ers collect more or less of a certain type of PII. We focus
on the top-20 A&A domains receiving PII (sorted by total
leaks in our dataset). Table 2 shows each domain (absent
its top-level domain), the number of services that contact
it, the average number of leaks per service, and the number
of leaked identifiers. We observe significant overlap between
the apps and Web sites that contact each A&A domain, re-
vealing that services tend to utilize the same trackers and
ad networks across platforms.

Notably, the A&A domain receiving the most leaks
(Amobee) is used by the fewest services (1). Further, the
third column group shows that Amobee receives a similar
set of PII over app and Web (intersection set size is two).
In addition, we find that Facebook is the most pervasively
contacted domain across our tested apps.

Interestingly, with few exceptions, top A&A domains col-
lect at least one type of PII from apps that are not collected
via Web sites. Thus, third-parties are leveraging different
platforms to expand the set of data that they collect about
users. We also see a small number of cases of platform-
specific data collection, e.g., YieldMo only collects PII from
apps in our set of services.

of Avg. Leaked
Services: Leaks: Identifiers:

A&A Domain App ∩ Web App Web App ∩ Web
amobee 1 1 1 517.0 314.0 3 2 2
moatads 9 7 12 61.4 0.2 1 1 1

vrvm 2 0 0 136.0 0.0 3 0 0
google-analytics 35 32 41 1.8 2.5 1 1 2

groceryserver 1 1 1 154.0 0.0 1 0 0
serving-sys 10 4 6 15.3 0.0 1 0 0
facebook 38 36 41 3.7 0.3 2 0 1

googlesyndication 16 14 23 7.0 0.8 1 1 1
thebrighttag 4 2 4 29.5 0.0 2 0 0

tiqcdn 5 5 9 16.0 3.1 1 1 1
marinsm 1 1 3 96.0 1.0 1 0 1

criteo 7 6 22 8.9 1.1 2 1 2
2mdn 14 9 17 5.8 0.0 1 0 0

monetate 1 1 2 74.0 0.0 1 0 0
247realmedia 1 1 2 48.0 12.0 1 0 1

krxd 7 6 13 8.3 0.0 3 0 0
doubleverify 3 2 7 19.3 0.0 1 0 0
cloudinary 1 1 1 0.0 58.0 0 0 1
webtrends 1 1 1 56.0 0.0 1 0 0

liftoff 1 0 0 54.0 0.0 2 0 0

Table 2: Top-20 A&A domains, sorted by total leaks.

Last, we focus on how each type of PII is leaked across
Web sites and apps in Table 3 (again, sorted by total leaks).
We see that locations, names, and unique tracking IDs are
most commonly leaked, with device-specific IDs being leaked
only over apps. The first column group shows that the apps
and Web sites leaking specific pieces of PII have relatively
low overlap (except for location), reinforcing our finding that
services may have very different privacy profiles across plat-
forms. Similarly, the third column group shows that each
type of PII is leaked to a significant number of domains by
both apps and Web sites, though the domains in common
between the two is a fraction of the total.

In summary, we find that there is no clear winner in terms
of privacy-footprint between apps and their Web counter-
parts. Services leak significant information on both plat-
forms, but typically not the same information.

of Domains
Services: Avg. Leaks: Leaked To:

PII App ∩ Web App Web App ∩ Web
Location 31 21 26 356.0 295.2 84 37 76

Name 9 8 16 77.1 138.2 11 7 26
Unique ID 39 0 0 40.0 0.0 64 0 0
Username 3 1 4 23.0 100.2 4 2 9
Gender 4 1 8 3.0 25.0 4 1 11

Phone # 3 1 2 12.7 60.5 3 1 2
Email 10 2 7 2.3 17.6 10 1 7

Device Name 15 0 0 2.7 0.0 13 0 0
Password 3 1 2 3.0 2.0 3 1 1
Birthday 1 0 1 1.0 3.0 1 0 2

Table 3: PII, sorted by total leaks.

5. CONCLUDING DISCUSSION
This paper asks a simple question—are apps or Web sites

better for privacy?—and finds the answer not at all straight-
forward. Several clear trends emerged: more domains are
contacted from Web sites, and more device identifiers were
leaked from apps. However, we also found a pervasive track-
ing ecosystem that exposes users’ PII across both Web and
app versions of the same service, and across different ser-
vices. In short, there is no single answer to the seminal
question in this work; rather, the answer depends on user
preferences and priorities for controlling access to their PII.
Our analysis provides the necessary data to inform custom
recommendations for privacy via:

https://recon.meddle.mobi/appvsweb/

There are a number of interesting topics for future re-
search. For example, we would like to understand cross-
service PII leaks, as well as provide users with actionable
information about how leaked PII can be used by other par-
ties to build profiles about them. An interesting question is
how effective are existing browser privacy protection tools
in light of our findings, and how we might augment ReCon
to provide improved protection in the mobile environment.

Acknowledgements
We thank the anonymous reviewers and our shepherd Theo
Benson for their helpful feedback. This work was partially
supported by the Data Transparency Lab, and by NSF
grants IIS-1408345 and IIS-1553088. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the funding agencies.

6. REFERENCES
[1] App Annie App Store Stats. http://www.appannie.com/.

[2] EasyList. https://easylist.github.io/.

[3] Mitmproxy. https://mitmproxy.org/.

[4] Android developer dashboard, April 2016.
http://developer.android.com/about/dashboards/index.html.

[5] Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan,
A., and Diaz, C. The web never forgets: Persistent tracking
mechanisms in the wild. In Proc. of CCS (2014).

[6] Agarwal, Y., and Hall, M. ProtectMyPrivacy: Detecting and
Mitigating Privacy Leaks on iOS Devices Using Crowdsourcing.
In Proc. of MobiSys (2013).

[7] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proc. of
PLDI (2014).

[8] Ayenson, M., Wambach, D. J., Soltani, A., Good, N., and
Hoofnagle, C. J. Flash cookies and privacy ii: Now with html5
and etag respawning. Available at SSRN 1898390 (2011).

[9] Azim, T., and Neamtiu, I. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In Proc. of OOPSLA
(2013).

[10] Bashir, M. A., Arshad, S., Robertson, W., and Wilson, C.
Tracing Information Flows Between Ad Exchanges Using
Retargeted Ads. In Proceedings of the 25th USENIX Security
Symposium (2016).

[11] Cahn, A., Alfeld, S., Barford, P., and Muthukrishnan, S. An
empirical study of web cookies. In Proc. of WWW (2016).

[12] Chen, X., and Zhu, S. DroidJust: Automated
Functionality-aware Privacy Leakage Analysis for Android
Applications. In Proc. of WiSec (2015).

[13] Choudhary, S. R., Gorla, A., and Orso, A. Automated Test
Input Generation for Android: Are We There Yet? In Proc. of
the IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2015).

[14] Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proc. of NDSS
(2011).

[15] Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P.,
Mayer, J., Narayanan, A., and Felten, E. W. Cookies that give
you away: The surveillance implications of web tracking. In
Proc. of WWW (2015).

[16] Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier, R.
The rise of panopticons: Examining region-specific third-party
web tracking. In Proc of. Traffic Monitoring and Analysis
(2014).

[17] Gibler, C., Crussell, J., Erickson, J., and Chen, H.
AndroidLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In Proc. of
TRUST (2012).

[18] Gill, P., Erramilli, V., Chaintreau, A., Krishnamurthy, B.,
Papagiannaki, K., and Rodriguez, P. Follow the money:
Understanding economics of online aggregation and advertising.
In Proc. of IMC (2013).

[19] Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.
PUMA: Programmable UI-Automation for Large-Scale
Dynamic Analysis of Mobile Apps. In Proc. of MobiSys (2014).

[20] Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.
PUMA: Programmable UI-automation for Large-scale Dynamic
Analysis of Mobile Apps. In Proc. of MobiSys (2014).

[21] Jeon, J., Micinski, K. K., and Foster, J. S. SymDroid:
Symbolic Execution for Dalvik Bytecode. Tech. Rep.
CS-TR-5022, University of Maryland, College Park, 2012.

[22] Kamkar, S. Evercookie - virtually irrevocable persistent
cookies., September 2010. http://samy.pl/evercookie/.

[23] Kim, J., Yoon, Y., Yi, K., and Shin, J. SCANDAL: Static
Analyzer for Detecting Privacy Leaks in Android Applications.
In Proc. of MoST (2012).

[24] Kohno, T., Broido, A., and Claffy, K. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing 2, 2 (2005), 93–108.

[25] Krishnamurthy, B., Malandrino, D., and Wills, C. E.
Measuring privacy loss and the impact of privacy protection in
web browsing.

[26] Krishnamurthy, B., Naryshkin, K., and Wills, C. Privacy
diffusion on the web: A longitudinal perspective. In Proc. of
WWW (2009).

[27] Krishnamurthy, B., and Wills, C. Privacy leakage vs.
protection measures: the growing disconnect. In Proc. of
W2SP (2011).

[28] Li, T.-C., Hang, H., Faloutsos, M., and Efstathopoulos, P.
Trackadvisor: Taking back browsing privacy from third-party
trackers. In Proc. of PAM (2015).

[29] Liu, Y., Song, H. H., Bermudez, I., Mislove, A., Baldi, M., and
Tongaonkar, A. Identifying personal information in internet
traffic. In Proceedings of the 3rd ACM Conference on Online
Social Networks (COSN’15) (Palo Alto, CA, November 2015).

[30] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities.
In Proc. of ACM CCS (2012).

[31] Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An Input
Generation System for Android Apps. In Proc. of the Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE) (2013).

[32] McDonald, A. M., and Cranor, L. F. Americans’ attitudes
about internet behavioral advertising practices. In Proc. of
WPES (2010).

[33] Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting
canvas in html5. In Proc. of W2SP (2012).

[34] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C.,
Piessens, F., and Vigna, G. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In Proc. of IEEE
Symposium on Security and Privacy (2013).

[35] Olejnik, L., Castelluccia, C., and Janc, A. Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing History
Patterns. In Proc. of HotPETs (2012).

[36] Papaodyssefs, F., Iordanou, C., Blackburn, J., Laoutaris, N.,
and Papagiannaki, K. Web identity translator: Behavioral
advertising and identity privacy with wit. In Proc. of HotNets
(2015).

[37] Rao, A., Kakhki, A. M., Razaghpanah, A., Li, A., nad
Arnaud Legout, D. C., Mislove, A., and Gill, P. Meddle:
Enabling Transparency and Control for Mobile Internet Traffic.
JoTS, 2015103003 (October 2015).

[38] Ren, J., Rao, A., Lindorfer, M., Legout, A., and Choffnes,
D. R. ReCon: Revealing and controlling privacy leaks in mobile
network traffic. In Proc. of MobiSys (2016).

[39] Roesner, F., Kohno, T., and Wetherall, D. Detecting and
defending against third-party tracking on the web. In Proc. of
NSDI (2012).

[40] The Wall Street Journal. What They Know - Mobile.
http://blogs.wsj.com/wtk-mobile/, December 2010.

[41] Turow, J., Hennessy, M., and Draper, N. The tradeoff fallacy:
How marketers are misrepresenting american consumers and
opening them up to exploitation. Report from the Annenberg
School for Communication, June 2015. https://www.asc.upenn.
edu/sites/default/files/TradeoffFallacy_1.pdf.

[42] Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger,
Y., Papagiannaki, K., Haddadi, H., and Crowcroft, J.
Breaking for commercials: Characterizing mobile advertising.
In Proc. of IMC (2012).

[43] Xia, M., Gong, L., Lyu, Y., Qi, Z., and Liu, X. Effective
Real-time Android Application Auditing. In IEEE Symposium
on Security and Privacy (2015).

[44] Yan, L. K., and Yin, H. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. In Proc. of USENIX Security (2012).

[45] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and Wang,
X. S. AppIntent: Analyzing Sensitive Data Transmission in
Android for Privacy Leakage Detection. In Proc. of ACM CCS
(2013).

[46] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang,
X. S., and Zang, B. Vetting undesirable behaviors in Android
apps with permission use analysis. In Proc. of ACM CCS
(2013).

